Context:Baseball pitching kinematics, kinetics, ball velocity, and injuries at the shoulder and elbow are related.Evidence Acquisition:PubMed and Sport Discus were searched for original studies published between 1994 and 2008. Relevant references in these studies were retrieved. Inferential studies that tested relationships between kinematics and kinetics were included, as were studies that tested relationships between kinematics and ball velocity. Descriptive studies that simply quantified kinematics and/or kinetics were excluded.Results:Several kinematic parameters at the instant of foot contact were associated with increased upper extremity kinetics: front foot position, front foot orientation, shoulder abduction, and shoulder horizontal adduction. The timing of shoulder external rotation, pelvis rotation, and upper trunk rotation was associated with increased kinetics and decreased ball velocity. Low braking force of the lead leg and a short stride were associated with decreased ball velocity. Decreased maximum shoulder external rotation, shoulder abduction, knee extension, and trunk tilt were also associated with decreased ball velocity. As pitchers develop, kinematic values remain similar, their variability reduces, and kinetic values gradually increase. Slight kinematic variations were seen among pitch types, although the kinetics of fastballs and curveballs were relatively the same; changeup kinetics were the lowest. As pitchers fatigued, kinetic values remained constant, but increases in arm pain were reported.Conclusions:Several kinematic parameters were related to joint kinetics and ball velocity. To enhance performance and reduce injury risk, pitchers need to learn proper fastball mechanics at an early age. A changeup is recommended as a safe secondary pitch to complement the fastball; the curveball can be added after fastball and changeup mechanics are mastered. Avoiding overuse and pitching while fatigued is necessary to minimize the risk of arm injury.
Study Design Controlled laboratory study. Objectives To test for kinematic and kinetic differences between baseball pitching from a mound and long-toss on flat ground. Background Long-toss throws from flat ground are commonly used by baseball pitchers for rehabilitation, conditioning, and training. However, there is controversy over the biomechanics and functionality of such throws. Methods Seventeen healthy, college baseball pitchers pitched fastballs 18.4 m from a mound to a strike zone, and threw 37 m, 55 m, and maximum distance from flat ground. For the 37-m and 55-m throws, participants were instructed to throw “hard, on a horizontal line.” For the maximum-distance throw, no constraint on trajectory was given. Kinematics and kinetics were measured with a 3-dimensional, automated motion analysis system. Repeated-measures analyses of variance, with post hoc paired t tests, were used to compare the 4 throw types within pitchers. Results At foot contact, the participant's shoulder line was nearly horizontal when pitching from a mound and became progressively more inclined as throwing distance increased. At arm cocking, the greatest amount of shoulder external rotation (mean ± SD, 180° ± 11°), elbow flexion (109° ± 10°), shoulder internal rotation torque (101 ± 17 Nm), and elbow varus torque (100 ± 18 Nm) were measured during the maximum-distance throws. Elbow extension velocity was also greatest for the maximum-distance throws (2573°/s ± 203°/s). Forward trunk tilt at the instant of ball release decreased as throwing distance increased. Conclusion Hard, horizontal, flat-ground throws have biomechanical patterns similar to those of pitching and are, therefore, reasonable exercises for pitchers. However, maximum-distance throws produce increased torques and changes in kinematics. Caution is, therefore, advised in the use of these throws for rehabilitation and training. J Orthop Sports Phys Ther 2011;41(5):296–303, Epub 5 January 2011. doi:10.2519/jospt.2011.3568
The purpose of this study was to quantify trunk axial rotation and angular acceleration in pitching and batting of elite baseball players. Healthy professional baseball pitchers (n = 40) and batters (n = 40) were studied. Reflective markers attached to each athlete were tracked at 240 Hz with an eight-camera automated digitizing system. Trunk axial rotation was computed as the angle between the pelvis and the upper trunk in the transverse plane. Trunk angular acceleration was the second derivative of axial rotation. Maximum trunk axial rotation (55 +/- 6 degrees) and angular acceleration (11,600 +/- 3,100 degrees/s2) in pitching occurred before ball release, approximately at the instant the front foot landed. Maximum trunk axial rotation (46 +/- 9 degrees) and angular acceleration (7,200 +/- 2,800 degrees/s2) in batting occurred in the follow-through after ball contact. Thus, the most demanding instant for the trunk and spine was near front foot contact for pitching and after ball contact for batting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.