Child of agriculture families are likely to be exposed to agricultural chemicals, even if they are not involved in farm activities. This study was designed to determine whether such children are exposed to higher levels of pesticides than children whose parents are not involved in agriculture and whose homes are not close to farms. Household dust and soil samples were collected in children's play areas from 59 residences in eastern Washington State (26 farming, 22 farmworker, and 11 nonfarming families). The majority of the farm families lived within 200 feet of an operating apple or pear orchard, whereas all reference homes were located at least a quarter of a mile from an orchard. Four organophosphorous (OP) insecticides commonly used on tree fruit were targeted for analysis: azinphosmethyl, chlorpyrifos, parathion, and phosmet. Samples were extracted and analyzed by gas chromatography/mass selective detection. Pesticide concentrations in household dust were significantly higher than in soil for all groups. OP levels for farmer/farm-worker families ranged from nondetectable to 930 ng/g in soil (0.93 ppm) and from nondetectable to 17,000 ng/g in dust (17 ppm); all four OP compounds were found in 62% of household dust samples, and two-thirds of the farm homes contained at least one OP above 1000 ng/g. Residues were found less frequently in reference homes and all levels were below 1000 ng/g. Household dust concentrations for all four target compounds were significantly lower in reference homes when compared to farmer/farmworker homes (Mann Whitney, U test; p < 0.05). These results demonstrate that children of agricultural families have a higher potential for exposure to OP pesticides than children of nonfarm families in this region. Measurable residues of a toxicity, I compound registered exclusively for agricultural use, azcnphosmettyl were found in household dust samples from all study homes, suggesting that low level exposure to such chemicals occurs throughout the region. Children's total and cumulative exposure to this pesticide class from household dust, soil, and other sources warrants further investigation.ImagesFigure 1.Figure 2.
Methylation is considered the detoxification pathway for inorganic arsenic (InAs), an established human carcinogen. Urinary speciation analysis is used to assess the distribution of metabolites [monomethylarsonate (MMA), dimethylarsinate (DMA), and unmethylated arsenic (InAs)], as indicators of methylation capacity. We conducted a large biomarker study in northern Chile of a population chronically exposed to high levels of arsenic in drinking water. We report the results of the methylation study, which focused on the effects of exposure and other variables on the percent InAs, MMA, DMA, and the ratio of MMA to DMA in urine. The study consisted of 122 people in a town with arsenic water levels around 600 micrograms/l and 98 participants in a neighboring town with arsenic levels in water of about 15 micrograms/l. The corresponding mean urinary arsenic levels were 580 micrograms/l and 60 micrograms/l, of which 18.4% and 14.9% were InAs, respectively. The main differences were found for MMA:DMA; exposure, smoking, and being male were associated with higher MMA:DMA, while longer residence, Atacameño ethnicity, and being female were associated with lower MMA:DMA. Together, these variables explained about 30% of the variability in MMA:DMA. Overall, there was no evidence of a threshold for methylation capacity, even at very high exposures, and the interindividual differences were within a much wider range than those attributed to the variables investigated. The differences in percent InAs were small and within the ranges of other studies of background exposure levels. The biological significance of MMA:DMA, which was more than 1.5 times greater in the exposed group, and its relationship to sex, length of exposure, and ethnicity need further investigation because its relevance to health risk is not clear.Imagesp620-aFigure 1.Figure 2.Figure 2.Figure 2.Figure 2.
In this article we present results from a 2-year comprehensive exposure assessment study that examined the particulate matter (PM) exposures and health effects in 108 individuals with and without chronic obstructive pulmonary disease (COPD), coronary heart disease (CHD), and asthma. The average personal exposures to PM with aerodynamic diameters < 2.5 µm (PM 2.5 ) were similar to the average outdoor PM 2.5 concentrations but significantly higher than the average indoor concentrations. Personal PM 2.5 exposures in our study groups were lower than those reported in other panel studies of susceptible populations. Indoor and outdoor PM 2.5 , PM 10 (PM with aerodynamic diameters < 10 µm), and the ratio of PM 2.5 to PM 10 were significantly higher during the heating season. The increase in outdoor PM 10 in winter was primarily due to an increase in the PM 2.5 fraction. A similar seasonal variation was found for personal PM 2.5 . The high-risk subjects in our study engaged in an equal amount of dust-generating activities compared with the healthy elderly subjects. The children in the study experienced the highest indoor PM 2.5 and PM 10 concentrations. Personal PM 2.5 exposures varied by study group, with elderly healthy and CHD subjects having the lowest exposures and asthmatic children having the highest exposures. Within study groups, the PM 2.5 exposure varied depending on residence because of different particle infiltration efficiencies. Although we found a wide range of longitudinal correlations between central-site and personal PM 2.5 measurements, the longitudinal r is closely related to the particle infiltration efficiency. PM 2.5 exposures among the COPD and CHD subjects can be predicted with relatively good power with a microenvironmental model composed of three microenvironments. The prediction power is the lowest for the asthmatic children.
Children up to 6 years of age-who lived with pesticide applicators were monitored for icreased risk of pestiide exposure: 48 pesticide applicator nd 14 refrece fmfiie were recruited fom an agcultura region ofWashingon State inlune 1995. A total af 160 spot urine satpie were coilected from 88 children,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.