We introduce a phenomenological continuum model for mode III dynamic fracture that is based on the phase-field methodology used extensively to model interfacial pattern formation. We couple a scalar field, which distinguishes between "broken" and "unbroken" states of the system, to the displacement field in a way that consistently includes both macroscopic elasticity and a simple rotationally invariant short scale description of breaking. We report two-dimensional simulations that yield steady-state crack motion in a strip geometry above the Griffith threshold.
We present a mean-field theory for the evolution of RNA virus populations. The theory operates with a distribution of the population in a one-dimensional fitness space, and is valid for sufficiently smooth fitness landscapes. Our approach explains naturally the recent experimental observation [I. S. Novella et al., Proc. Natl. Acad. Sci. U.S.A. 92, 5841-5844 (1995)] of two distinct stages in the growth of virus fitness. [S0031-9007(96)00371-7]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.