Radiolabelled glucose was added to a batch culture of Alcaligenes eutrophus during the accumulation of poly(3-hydroxybutyrate) (PHB) to label newly synthesized polymer. The specific radioactivity of the polymer continued to increase, by approximately 30%, after the cessation of PHB accumulation, indicating that turnover of PHB was occurring. Fractionation of PHB showed that high molecular mass polymer was gradually replaced by PHB of lower molecular mass. Turnover of PHB is the cause of the slow decline in the molecular mass of PHB following the cessation of polymer accumulation but is unlikely to be the sole reason for the more rapid decrease in the molecular mass of PHB during the accumulation phase.
Metabolites associated with the poly(3-hydroxybutyrate) (PHB) biosynthetic pathway in Alcaligenes eutrophus were measured to gain an insight into the regulation of PHB synthesis in vivo. Alcaligenes eutrophus was grown in carbon-limited chemostat culture to provide bacteria producing negligible PHB, and in nitrogen-limited chemostat culture to yield PHB-synthesizing bacteria. 3-Hydroxybutyryl-CoA (3HBCoA) was detected only in polymer-accumulating bacteria. The level of coenzyme A (CoASH) was approximately three times higher in the absence of PHB synthesis, in accord with the putative role of this metabolite in the regulation of 3-ketothiolase. The level of acetoacetyl-CoA was, however, similar in PHB-accumulating and nonaccumulating bacteria, suggesting that NADPH-acetoacetyl-CoA reductase may regulate PHB synthesis in bacteria grown under carbon limitation. Immediately after nitrogen exhaustion in batch culture of A. eutrophus, there was an initial large decrease in the weight-average molecular weight, which corresponded to the rapid disappearance of CoASH and the maximum level of 3HBCoA. The decrease in the rate of PHB synthesis in batch culture was consistent with regulation involving NADPH-acetoacetyl-CoA reductase. The disappearance of 3HBCoA coincided with the cessation of PHB synthesis and the maximum level of acetyl-CoA.Key words: metabolites, PHB biosynthesis, regulation, Alcaligenes eutrophus, molecular weight.
Radiolabelled glucose was added to a batch culture of Alcaligenes eutrophus during the accumulation of poly(3‐hydroxybutyrate) (PHB) to label newly synthesized polymer. The specific radioactivity of the polymer continued to increase, by approximately 30%, after the cessation of PHB accumulation, indicating that turnover of PHB was occurring. Fractionation of PHB showed that high molecular mass polymer was gradually replaced by PHB of lower molecular mass. Turnover of PHB is the cause of the slow decline in the molecular mass of PHB following the cessation of polymer accumulation but is unlikely to be the sole reason for the more rapid decrease in the molecular mass of PHB during the accumulation phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.