The Free Amino Nitrogen (FAN) content of wort prescribes efficient yeast cell growth and fermentation performance. FAN consists of the individual amino acids, small peptides and ammonia ions formed during malting, the relative amounts of which vary. In this paper, the individual constituents of FAN were dissected and their effect on both ale and lager fermentations determined. The patterns of amino acid and small peptide uptake and the changes in extracellular protease activity revealed the dynamic environment that develops during fermentation. Lysine and methionine, previously identified as key amino acids in wort fermentation, were investigated further.
A new analytical method (liquid chromatography-antioxidant, LC-AOx) was used that is intended to separate beer polyphenols and to determine the potential antioxidant activity of these constituents after they were allowed to react online with a buffered solution of the radical cation 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS(•+)). Using the LC-AOx method, it was possible to demonstrate that the extent of the antioxidant activity was very much dependent on the phenolic compound considered. The method was also applied to the analysis of beer extracts and allowed the evaluation of their antioxidant activity at different steps of beer processing: brewing, boiling, and fermentation. This study showed that the total antioxidant activity remained unchanged throughout beer processing, as opposed to the polyphenolic content, which showed a 3-fold increase. Hopping and fermentation steps were the main causes of this increase. However, the increase measured after fermentation was attributed to a better extraction of polyphenols due to the presence of ethanol, rather than to a real increase in their content. Moreover, this method allowed the detection of three unknown antioxidant compounds, which accounted for 64 ± 4% of the total antioxidant activity of beer and were individually more efficient than caffeic acid and epicatechin.
Radiolabelled glucose was added to a batch culture of Alcaligenes eutrophus during the accumulation of poly(3-hydroxybutyrate) (PHB) to label newly synthesized polymer. The specific radioactivity of the polymer continued to increase, by approximately 30%, after the cessation of PHB accumulation, indicating that turnover of PHB was occurring. Fractionation of PHB showed that high molecular mass polymer was gradually replaced by PHB of lower molecular mass. Turnover of PHB is the cause of the slow decline in the molecular mass of PHB following the cessation of polymer accumulation but is unlikely to be the sole reason for the more rapid decrease in the molecular mass of PHB during the accumulation phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.