Transcription factors of the Myc proto-oncogene family promote cell division, but how they do this is poorly understood. Here we address the functions of Drosophila Myc (dMyc) during development. Using mosaic analysis in the fly wing, we show that loss of dMyc retards cellular growth (accumulation of cell mass) and reduces cell size, whereas dMyc overproduction increases growth rates and cell size. dMyc-induced growth promotes G1/S progression but fails to accelerate cell division because G2/M progression is independently controlled by Cdc25/String. We also show that the secreted signal Wingless patterns growth in the wing primordium by modulating dMyc expression. Our results indicate that dMyc links patterning signals to cell division by regulating primary targets involved in cellular growth and metabolism.
A major obstacle for the discovery of psychoactive drugs is the inability to predict how small molecules will alter complex behaviors. We report the development and application of a highthroughput, quantitative screen for drugs that alter the behavior of larval zebrafish. We found that the multi-dimensional nature of observed phenotypes enabled the hierarchical clustering of molecules according to shared behaviors. Behavioral profiling revealed conserved functions of psychotropic molecules and predicted the mechanisms of action of poorly characterized compounds. In addition, behavioral profiling implicated new factors such as ether-a-go-go-related gene (ERG) potassium channels and immunomodulators in the control of rest and locomotor activity. These results demonstrate the power of high-throughput behavioral profiling in zebrafish to discover and characterize psychotropic drugs and to dissect the pharmacology of complex behaviors.Most current drug discovery efforts focus on simple in vitro screening assays. Although such screens can be successful, they cannot recreate the complex network interactions of whole organisms. These limitations are particularly acute for psychotropic drugs because brain activity cannot be modeled in vitro (1,2 and supplemental text 1). Motivated by recent small molecule screens that probed zebrafish developmental processes (3-6), we developed a whole organism, high-throughput screen for small molecules that alter larval zebrafish locomotor behavior. We used an automated rest/wake behavioral assay (7,8) to monitor the activity of #to whom correspondence should be addressed,
As many as 10% of humans suffer chronic sleep disturbances, yet the genetic mechanisms that regulate sleep remain essentially unknown. It is therefore crucial to develop simple and cost-effective vertebrate models to study the genetic regulation of sleep. The best characterized mammalian sleep/wake regulator is hypocretin/orexin (Hcrt), whose loss results in the sleep disorder narcolepsy and that has also been implicated in feeding behavior, energy homeostasis, thermoregulation, reward seeking, addiction, and maternal behavior. Here we report that the expression pattern and axonal projections of embryonic and larval zebrafish Hcrt neurons are strikingly similar to those in mammals. We show that zebrafish larvae exhibit robust locomotive sleep/wake behaviors as early as the fifth day of development and that Hcrt overexpression promotes and consolidates wakefulness and inhibits rest. Similar to humans with insomnia, Hcrtoverexpressing larvae are hyperaroused and have dramatically reduced abilities to initiate and maintain rest at night. Remarkably, Hcrt function is modulated by but does not require normal circadian oscillations in locomotor activity. Our zebrafish model of Hcrt overexpression indicates that the ancestral function of Hcrt is to promote locomotion and inhibit rest and will facilitate the discovery of neural circuits, genes, and drugs that regulate Hcrt function and sleep.
Identification of rare inherited variants associated with ASD and 16 new ASD risk genes d Inherited risk reveals both new biological pathways and shared PPI with known genes d We develop and validate a machine learning algorithm (ARC) to remove WGS artifacts d NR3C2 mutations define a novel syndromic form of ASD, which we model in zebrafish
The Ras GTPase links extracellular mitogens to intracellular mechanisms that control cell proliferation. To understand how Ras regulates proliferation in vivo, we activated or inactivated Ras in cell clones in the developing Drosophila wing. Cells lacking Ras were smaller, had reduced growth rates, accumulated in G1, and underwent apoptosis due to cell competition. Conversely, activation of Ras increased cell size and growth rates and promoted G1/S transitions. Ras upregulated the growth driver dMyc, and both Ras and dMyc increased levels of cyclin E posttranscriptionally. We propose that Ras primarily promotes growth and that growth is coupled to G1/S progression via cyclin E. Interestingly, upregulation of growth by Ras did not deregulate G2/M progression or a developmentally regulated cell cycle exit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.