This paper presents the Laplace transform of the time until ruin for a fairly general risk model. The model includes both the classical and most Sparre-Andersen risk models with phase-distributed claim amounts as special cases. It also allows for correlated arrival processes, and claim sizes that depend upon environmental factors such as periods of contagion. The paper exploits the relationship between the surplus process and fluid queues, where a number of recent developments have provided the basis for our analysis.
We are interested in queues in which customers of different classes arrive to a service facility, and where performance targets are specified for each class. The manager of such a queue has the task of implementing a queueing discipline that results in the performance targets for all classes being met simultaneously. For the case where the performance targets are specified in terms of ratios of mean waiting times, as long ago as the 1960s, Kleinrock suggested a queueing discipline to ensure that the targets are achieved. He proposed that customers accumulate priority as a linear function of their time in the queue: the higher the urgency of the customer's class, the greater the rate at which that customer accumulates priority. When the server becomes free, the customer (if any) with the highest accumulated priority at that time point is the one that is selected for service. Kleinrock called such a queue a time-dependent priority queue, but we shall refer to it as the accumulating priority queue. Recognising that the performance of many queues, particularly in the healthcare and human services sectors, is specified in terms of tails of waiting time distributions for customers of different classes, we revisit the accumulating priority queue to derive its waiting time distributions, rather than just the mean waiting times. We believe that some elements of our analysis, particularly the process that we call the maximum priority process, are of mathematical interest in their own right.
We consider a stochastic fire growth model, with the aim of predicting the behaviour of large forest fires. Such a model can describe not only average growth, but also the variability of the growth. Implementing such a model in a computing environment allows one to obtain probability contour plots, burn size distributions, and distributions of time to specified events. Such a model also allows the incorporation of a stochastic spotting mechanism.
For applications of stochastic fluid models, such as those related to wildfire spread and containment, one wants a fast method to compute time dependent probabilities. Erlangization is an approximation method that replaces various distributions at a time t by the corresponding ones at a random time with Erlang distribution having mean t. Here, we develop an efficient version of that algorithm for various first passage time distributions of a fluid flow, exploiting recent results on fluid flows, probabilistic underpinnings, and some special structures. Some connections with a familiar Laplace transform inversion algorithm due to Jagerman are also noted up front.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright 漏 2024 scite LLC. All rights reserved.
Made with 馃挋 for researchers
Part of the Research Solutions Family.