Signal-transduction pathways mediated by guanine nucleotide-binding regulatory proteins (G proteins) determine many of the responses of hematopoietic cells. A recently identified gene encoding a G protein alpha subunit, G alpha 16, is specifically expressed in human cells of the hematopoietic lineage. The G alpha 16 cDNA encodes a protein with predicted Mr of 43,500, which resembles the G q class of alpha subunits and does not include a pertussis toxin ADP-ribosylation site. In comparison with other G protein alpha subunits, the G alpha 16 predicted protein has distinctive amino acid sequences in the amino terminus, the region A guanine nucleotide-binding domain, and in the carboxyl-terminal third of the protein. Cell lines of myelomonocytic and T-cell phenotype express the G alpha 16 gene, but no expression is detectable in two B-cell lines or in nonhematopoietic cell lines. G alpha 16 gene expression is down-regulated in HL-60 cells induced to differentiate to neutrophils with dimethyl sulfoxide. Antisera generated from synthetic peptides that correspond to two regions of G alpha 16 specifically react with a protein of 42- to 43-kDa in bacterial strains that overexpress G alpha 16 and in HL-60 membranes. This protein is decreased in membranes from dimethyl sulfoxide-differentiated HL-60 cells and is not detectable in COS cell membranes. The restricted expression of this gene suggests that G alpha 16 regulates cell-type-specific signal-transduction pathways, which are not inhibited by pertussis toxin.
The 67LR (67 kDa laminin receptor) is a cell-surface receptor with high affinity for its primary ligand. Its role as a laminin receptor makes it an important molecule both in cell adhesion to the basement membrane and in signalling transduction following this binding event. The protein also plays critical roles in the metastasis of tumour cells. Isolation of the protein from either normal or cancerous cells results in a product with an approx. molecular mass of 67 kDa. This protein is believed to be derived from a smaller precursor, the 37LRP (37 kDa laminin receptor precursor). However, the precise mechanism by which cytoplasmic 37LRP becomes cell-membrane-embedded 67LR is unclear. The process may involve post-translational fatty acylation of the protein combined with either homo- or hetero-dimerization, possibly with a galectin-3-epitope-containing partner. Furthermore, it has become clear that acting as a receptor for laminin is not the only function of this protein. 67LR also acts as a receptor for viruses, such as Sindbis virus and dengue virus, and is involved with internalization of the prion protein. Interestingly, unmodified 37LRP is a ribosomal component and homologues of this protein are found in all five kingdoms. In addition, it appears to be strongly associated with histones in the eukaryotic cell nucleus, although the precise role of these interactions is not clear. Here we review the current understanding of the structure and function of this molecule, as well as highlighting areas requiring further research.
Plasma polymerisation is a technologically important surface engineering process capable of depositing ultra-thin functionalised films for a variety of purposes. It has many advantages over other surface engineering processes, including that it is completely dry, can be used for complex geometries, and the physico-chemical properties of the film can be tailored through judicious choice of processing conditions. Despite this, the mechanisms of film growth are largely unknown, and current models are based on purely chemical arguments. Consideration of some basic plasma physics shows that some species can arrive at surfaces with energies greater than 1000 kJ mol 21 (.10 eV), and thus open a range of surface reactions that have not been considered previously. This review aims to close the gap between the physics and chemistry of reactive plasma systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.