Determining the extent of adaptive evolution at the genomic level is central to our understanding of molecular evolution. A suitable observation for this purpose would consist of polymorphic data on a large and unbiased collection of genes from two closely related species, each having a large and stable population. In this study, we sequenced 419 genes from 24 lines of Drosophila melanogaster and its close relatives. Together with data from Drosophila simulans, these data reveal the following. (i) Approximately 10% of the loci in regions of normal recombination are much less polymorphic at silent sites than expected, hinting at the action of selective sweeps.(ii) The level of polymorphism is negatively correlated with the rate of nonsynonymous divergence across loci. Thus, even under strict neutrality, the ratio of amino acid to silent nucleotide changes (A:S) between Drosophila species is expected to be 25-40% higher than the A:S ratio for polymorphism when data are pooled across the genome. (iii) The observed A/S ratio between species among the 419 loci is 28.9% higher than the (adjusted) neutral expectation. We estimate that nearly 30% of the amino acid substitutions between D. melanogaster and its close relatives were adaptive. (iv) This signature of adaptive evolution is observable only in regions of normal recombination. Hence, the low level of polymorphism observed in regions of reduced recombination may not be driven primarily by positive selection. Finally, we discuss the theories and data pertaining to the interpretation of adaptive evolution in genomic studies.McDonald-Kreitman test ͉ selection ͉ polymorphism R ecent studies based on DNA sequence data from large numbers of genes have increasingly suggested the prevalence of adaptive evolution in coding (1-5) as well as noncoding (6, 7) regions. The extent to which positive selection influences DNA polymorphism and divergence appears to be incompatible with the Neutral Theory of Molecular Evolution (8). This theory posits that the overall pattern of DNA evolution can be accounted for by mutation, genetic drift, and negative selection. It does not deny the operation of positive selection on some loci but only asserts that the overall pattern of genomic evolution can be explained without invoking adaptive evolution. Presumably, adaptive changes at any given time involve too small a fraction of the genome to be a statistically significant factor, despite their overwhelming biological significance.The evidence used to test the Neutral Theory can be classified as divergence among species (9-11), polymorphism within species (12-14) or a combination of these (15, 16). The combined approach, as exemplified by the McDonald-Kreitman (MK) test and its derivatives, can separate the effects of negative and positive selection and is especially informative about adaptive evolution. Many such studies have concluded that positive selection may play a significant role in driving amino acid substitutions in the human and Drosophila melanogaster lineages (1-5).However, as...
Hybrids between species are often sterile or inviable because the long-diverged genomes of their parents cause developmental problems when they come together in a single individual. According to the Dobzhansky-Muller (DM) model, the number of genes involved in these "intrinsic postzygotic incompatibilities" should increase faster than linearly with the divergence time between species. This straightforward prediction of the DM model has remained contentious owing to a lack of explicit tests. Examining two pairs of Drosophila species, we show that the number of genes involved in postzygotic isolation increases at least as fast as the square of the number of substitutions (an index of divergence time) between species. This observation verifies a key prediction of the DM model.
The use of molecular taxonomy for identifying recently diverged species has transformed the study of speciation in fungi. The pathogenic fungus Paracoccidioides spp has been hypothesized to be composed of five phylogenetic species, four of which compose the brasiliensis species complex. Nuclear gene genealogies support this divergence scenario, but mitochondrial loci do not; while all species from the brasiliensis complex are differentiated at nuclear coding loci, they are not at mitochondrial loci. We addressed the source of this incongruity using 11 previously published gene fragments, 10 newly-sequenced nuclear non-coding loci, and 10 microsatellites. We hypothesized and further demonstrated that the mito-nuclear incongruence in the brasiliensis species complex results from interspecific hybridization and mitochondrial introgression, a common phenomenon in eukaryotes. Additional population genetic analyses revealed possible nuclear introgression but much less than that seen in the mitochondrion. Our results are consistent with a divergence scenario of secondary contact and subsequent mitochondrial introgression despite the continued persistence of species boundaries. We also suggest that yeast morphology slightly-but significantly-differs across all five Paracoccidioides species and propose to elevate four of these phylogenetic species to formally described taxonomic species.
Histoplasma capsulatum is a pathogenic fungus that causes life-threatening lung infections. About 500,000 people are exposed to H. capsulatum each year in the United States, and over 60% of the U.S. population has been exposed to the fungus at some point in their life. We performed genome-wide population genetics and phylogenetic analyses with 30 Histoplasma isolates representing four recognized areas where histoplasmosis is endemic and show that the Histoplasma genus is composed of at least four species that are genetically isolated and rarely interbreed. Therefore, we propose a taxonomic rearrangement of the genus.
The process of speciation involves populations diverging over time until they are genetically and reproductively isolated. Hybridization between nascent species was long thought to directly oppose speciation. However, the amount of interspecific genetic exchange (introgression) mediated by hybridization remains largely unknown, although recent progress in genome sequencing has made measuring introgression more tractable. A natural place to look for individuals with admixed ancestry (indicative of introgression) is in regions where species co-occur. In west Africa, D. santomea and D. yakuba hybridize on the island of São Tomé, while D. yakuba and D. teissieri hybridize on the nearby island of Bioko. In this report, we quantify the genomic extent of introgression between the three species of the Drosophila yakuba clade (D. yakuba, D. santomea), D. teissieri). We sequenced the genomes of 86 individuals from all three species. We also developed and applied a new statistical framework, using a hidden Markov approach, to identify introgression. We found that introgression has occurred between both species pairs but most introgressed segments are small (on the order of a few kilobases). After ruling out the retention of ancestral polymorphism as an explanation for these similar regions, we find that the sizes of introgressed haplotypes indicate that genetic exchange is not recent (>1,000 generations ago). We additionally show that in both cases, introgression was rarer on X chromosomes than on autosomes which is consistent with sex chromosomes playing a large role in reproductive isolation. Even though the two species pairs have stable contemporary hybrid zones, providing the opportunity for ongoing gene flow, our results indicate that genetic exchange between these species is currently rare.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.