Determining the extent of adaptive evolution at the genomic level is central to our understanding of molecular evolution. A suitable observation for this purpose would consist of polymorphic data on a large and unbiased collection of genes from two closely related species, each having a large and stable population. In this study, we sequenced 419 genes from 24 lines of Drosophila melanogaster and its close relatives. Together with data from Drosophila simulans, these data reveal the following. (i) Approximately 10% of the loci in regions of normal recombination are much less polymorphic at silent sites than expected, hinting at the action of selective sweeps.(ii) The level of polymorphism is negatively correlated with the rate of nonsynonymous divergence across loci. Thus, even under strict neutrality, the ratio of amino acid to silent nucleotide changes (A:S) between Drosophila species is expected to be 25-40% higher than the A:S ratio for polymorphism when data are pooled across the genome. (iii) The observed A/S ratio between species among the 419 loci is 28.9% higher than the (adjusted) neutral expectation. We estimate that nearly 30% of the amino acid substitutions between D. melanogaster and its close relatives were adaptive. (iv) This signature of adaptive evolution is observable only in regions of normal recombination. Hence, the low level of polymorphism observed in regions of reduced recombination may not be driven primarily by positive selection. Finally, we discuss the theories and data pertaining to the interpretation of adaptive evolution in genomic studies.McDonald-Kreitman test ͉ selection ͉ polymorphism R ecent studies based on DNA sequence data from large numbers of genes have increasingly suggested the prevalence of adaptive evolution in coding (1-5) as well as noncoding (6, 7) regions. The extent to which positive selection influences DNA polymorphism and divergence appears to be incompatible with the Neutral Theory of Molecular Evolution (8). This theory posits that the overall pattern of DNA evolution can be accounted for by mutation, genetic drift, and negative selection. It does not deny the operation of positive selection on some loci but only asserts that the overall pattern of genomic evolution can be explained without invoking adaptive evolution. Presumably, adaptive changes at any given time involve too small a fraction of the genome to be a statistically significant factor, despite their overwhelming biological significance.The evidence used to test the Neutral Theory can be classified as divergence among species (9-11), polymorphism within species (12-14) or a combination of these (15, 16). The combined approach, as exemplified by the McDonald-Kreitman (MK) test and its derivatives, can separate the effects of negative and positive selection and is especially informative about adaptive evolution. Many such studies have concluded that positive selection may play a significant role in driving amino acid substitutions in the human and Drosophila melanogaster lineages (1-5).However, as...
Inhibition of the bromodomain of the transcriptional regulator CBP/P300 is an especially interesting new therapeutic approach in oncology. We recently disclosed in vivo chemical tool 1 (GNE-272) for the bromodomain of CBP that was moderately potent and selective over BRD4(1). In pursuit of a more potent and selective CBP inhibitor, we used structure-based design. Constraining the aniline of 1 into a tetrahydroquinoline motif maintained potency and increased selectivity 2-fold. Structure-activity relationship studies coupled with further structure-based design targeting the LPF shelf, BC loop, and KAc regions allowed us to significantly increase potency and selectivity, resulting in the identification of non-CNS penetrant 19 (GNE-781, TR-FRET IC = 0.94 nM, BRET IC = 6.2 nM; BRD4(1) IC = 5100 nΜ) that maintained good in vivo PK properties in multiple species. Compound 19 displays antitumor activity in an AML tumor model and was also shown to decrease Foxp3 transcript levels in a dose dependent manner.
Neuroinflammation is central to the pathology of traumatic brain injury (TBI). Xuefu Zhuyu decoction (XFZY) is an effective traditional Chinese medicine to treat TBI. To elucidate its potential molecular mechanism, this study aimed to demonstrate that XFZY functions as an anti-inflammatory agent by inhibiting the PI3K-AKT-mTOR pathway. Sprague-Dawley rats were exposed to controlled cortical impact to produce a neuroinflammatory response. The treatment groups received XFZY (9 g/kg and 18 g/kg), Vehicle group and Sham group were gavaged with equal volumes of saline. The modified neurologic severity score (mNSS) and the Morris water maze test were used to assess neurological deficits. Arachidonic acid (AA) levels in brain tissue were measured using tandem gas chromatography-mass spectrometry. TNF-α and IL-1β levels in injured ipsilateral brain tissue were detected by ELISA. AKT and mTOR expression were measured by western blot analysis. The results indicated that XFZY significantly enhanced spatial memory acquisition. XFZY (especially at a dose of 9 g/kg) markedly reduced the mNSS and levels of AA, TNF-α and IL-1β. Significant downregulation of AKT/mTOR/p70S6K proteins in brain tissues was observed after the administration of XFZY (especially at a dose of 9 g/kg). XFZY may be a promising therapeutic strategy for reducing inflammation in TBI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.