Functionalized indoles are recurrent motifs in bioactive natural products and pharmaceuticals. While transition metal-catalyzed carbene transfer has provided an attractive route to afford C3-functionalized indoles, these protocols are viable only in the presence of N-protected indoles, owing to competition from the more facile N-H insertion reaction. Herein, a biocatalytic strategy for enabling the direct C-H functionalization of unprotected indoles is reported. Engineered variants of myoglobin provide efficient biocatalysts for this reaction, which has no precedents in the biological world, enabling the transformation of a broad range of indoles in the presence of ethyl α-diazoacetate to give the corresponding C3-functionalized derivatives in high conversion yields and excellent chemoselectivity. This strategy could be exploited to develop a concise chemoenzymatic route to afford the nonsteroidal anti-inflammatory drug indomethacin.
The small, stable heme protein myoglobin (Mb) was modified through cofactor substitution and mutagenesis to develop a new catalyst for carbene transfer reactions. The native heme was removed from wild-type Mb and several Mb His64 mutants (H64D, H64A, H64V), and the resulting apoproteins were reconstituted with ruthenium mesoporphyrin IX (RuMpIX). The reconstituted proteins (RuMb) were characterized by UV-vis and circular dichroism spectroscopy and were used as catalysts for the N-H insertion of aniline derivatives and the cyclopropanation of styrene derivatives. The best catalysts for each reaction were able to achieve turnover numbers (TON) up to 520 for the N-H insertion of aniline, and 350 TON for the cyclopropanation of vinyl anisole. Our results show that RuMb is an effective catalyst for N-H insertion, with the potential to further increase the activity and stereoselectivity of the catalyst in future studies. Compared to native Mb ("FeMb"), RuMb is a more active catalyst for carbene transfer reactions, which leads to both heme and protein modification and degradation and, hence, to an overall much-reduced lifetime of the catalyst. This leads to lower TONs for RuMb compared to the iron-containing analogues. Strategies to overcome this limitation are discussed. Finally, comparison is also made to FeH64DMb and FeH64AMb, which have not been previously investigated for carbene transfer reactions.
2,3‐Dihydrobenzofurans are key pharmacophores in many natural and synthetic bioactive molecules. A biocatalytic strategy is reported here for the highly diastereo‐ and enantioselective construction of stereochemically rich 2,3‐dihydrobenzofurans in high enantiopurity (>99.9% de and ee), high yields, and on a preparative scale via benzofuran cyclopropanation with engineered myoglobins. Computational and structure‐reactivity studies provide insights into the mechanism of this reaction, enabling the elaboration of a stereochemical model that can rationalize the high stereoselectivity of the biocatalyst. This information was leveraged to implement a highly stereoselective route to a drug molecule and a tricyclic scaffold featuring five stereogenic centers via a single‐enzyme transformation. This work expands the biocatalytic toolbox for asymmetric C–C bond transformations and should prove useful for further development of metalloprotein catalysts for abiotic carbene transfer reactions.
Supportinginformation and the ORCID identification number(s) for the author(s) of this article can be found under: https://doi.
Enhancing the thermostability of enzymes without impacting their catalytic function represents an important yet challenging goal in protein engineering and biocatalysis. We recently introduced a novel method for enzyme thermostabilization that relies on the computationally guided installation of genetically encoded thioether “staples” into a protein via cysteine alkylation with the noncanonical amino acid O -2-bromoethyl tyrosine (O2beY). Here, we demonstrate the functionality of an expanded set of electrophilic amino acids featuring chloroacetamido, acrylamido, and vinylsulfonamido side-chain groups for protein stapling using this strategy. Using a myoglobin-based cyclopropanase as a model enzyme, our studies show that covalent stapling with p -chloroacetamido-phenylalanine (pCaaF) provides higher stapling efficiency and enhanced stability (thermodynamic and kinetic) compared to the other stapled variants and the parent protein. Interestingly, molecular simulations of conformational flexibility of the cross-links show that the pCaaF staple allows fewer energetically feasible conformers than the other staples, and this property may be a broader indicator of stability enhancement. Using this strategy, pCaaF-stapled variants with significantly enhanced stability against thermal denaturation (Δ T m ′ = +27 °C) and temperature-induced heme loss (Δ T 50 = +30 °C) were obtained while maintaining high levels of catalytic activity and stereoselectivity. Crystallographic analyses of singly and doubly stapled variants provide key insights into the structural basis for stabilization, which includes both direct interactions of the staples with protein residues and indirect interactions through adjacent residues involved in heme binding. This work expands the toolbox of protein stapling strategies available for protein stabilization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.