The biological reduction of atmospheric N2 to ammonium (nitrogen fixation) provides about 65% of the biosphere's available nitrogen. Most of this ammonium is contributed by legume-rhizobia symbioses, which are initiated by the infection of legume hosts by bacteria (rhizobia), resulting in formation of root nodules. Within the nodules, rhizobia are found as bacteroids, which perform the nitrogen fixation: to do this, they obtain sources of carbon and energy from the plant, in the form of dicarboxylic acids. It has been thought that, in return, bacteroids simply provide the plant with ammonium. But here we show that a more complex amino-acid cycle is essential for symbiotic nitrogen fixation by Rhizobium in pea nodules. The plant provides amino acids to the bacteroids, enabling them to shut down their ammonium assimilation. In return, bacteroids act like plant organelles to cycle amino acids back to the plant for asparagine synthesis. The mutual dependence of this exchange prevents the symbiosis being dominated by the plant, and provides a selective pressure for the evolution of mutualism.
N2‐fixation by Rhizobium‐legume symbionts is of major ecological and agricultural importance, responsible for producing a substantial fraction of the biosphere's nitrogen. On the basis of 15N‐labelling studies, it had been generally accepted that ammonium is the sole secretion product of N2‐fixation by the bacteroid and that the plant is responsible for assimilating it into amino acids. However, this paradigm has been challenged in a recent 15N‐labelling study showing that soybean bacteroids only secrete alanine. Hitherto, nitrogen secretion has only been assessed from in vitro15N‐labelling studies of isolated bacteroids. We show that both ammonium and alanine are secreted by pea bacteroids. The in vitro partitioning between them will depend on whether the system is open or closed, as well as the ammonium concentration and bacteroid density. To overcome these limitations we identified and mutated the gene for alanine dehydrogenase (aldA) and demonstrate that AldA is the primary route for alanine synthesis in isolated bacteroids. Bacteroids of the aldA mutant fix nitrogen but only secrete ammonium at a significant rate, resulting in lower total nitrogen secretion. Peas inoculated with the aldA mutant are green and healthy, demonstrating that ammonium secretion by bacteroids can provide sufficient nitrogen for plant growth. However, plants inoculated with the mutant are reduced in biomass compared with those inoculated with the wild type. The labelling and plant growth studies suggest that alanine synthesis and secretion contributes to the efficiency of N2‐fixation and therefore biomass accumulation.
The available data from published in vitro and in vivo studies suggest that curcumin may be a beneficial complementary treatment for OA in humans and companion animals. Nevertheless, before initiating extensive clinical trials, more basic research is required to improve its solubility, absorption and bioavailability and gain additional information about its safety and efficacy in different species. Once these obstacles have been overcome, curcumin and structurally related biochemicals may become safer and more suitable nutraceutical alternatives to the non-steroidal anti-inflammatory drugs that are currently used for the treatment of OA.
Mass spectrometry is an analytical technique for the characterization of biological samples and is increasingly used in omics studies because of its targeted, nontargeted, and high throughput abilities. However, due to the large datasets generated, it requires informatics approaches such as machine learning techniques to analyze and interpret relevant data. Machine learning can be applied to MS-derived proteomics data in two ways. First, directly to mass spectral peaks and second, to proteins identified by sequence database searching, although relative protein quantification is required for the latter. Machine learning has been applied to mass spectrometry data from different biological disciplines, particularly for various cancers. The aims of such investigations have been to identify biomarkers and to aid in diagnosis, prognosis, and treatment of specific diseases. This review describes how machine learning has been applied to proteomics tandem mass spectrometry data. This includes how it can be used to identify proteins suitable for use as biomarkers of disease and for classification of samples into disease or treatment groups, which may be applicable for diagnostics. It also includes the challenges faced by such investigations, such as prediction of proteins present, protein quantification, planning for the use of machine learning, and small sample sizes.
Amino acid uptake by Rhizobium leguminosarum is dominated by two ABC transporters, the general amino acid permease (Aap) and the branched-chain amino acid permease (Bra Rl ). Characterization of the solute specificity of Bra Rl shows it to be the second general amino acid permease of R. leguminosarum. Although Bra Rl has high sequence identity to members of the family of hydrophobic amino acid transporters (HAAT), it transports a broad range of solutes, including acidic and basic polar amino acids (L-glutamate, L-arginine, and L-histidine), in addition to neutral amino acids (L-alanine and L-leucine). While amino and carboxyl groups are required for transport, solutes do not have to be ␣-amino acids. Consistent with this, Bra Rl is the first ABC transporter to be shown to transport ␥-aminobutyric acid (GABA). All previously identified bacterial GABA transporters are secondary carriers of the amino acid-polyamine-organocation (APC) superfamily. Also, transport by Bra Rl does not appear to be stereospecific as D amino acids cause significant inhibition of uptake of L-glutamate and L-leucine. Unlike all other solutes tested, L-alanine uptake is not dependent on solute binding protein BraC Rl . Therefore, a second, unidentified solute binding protein may interact with the BraDEFG Rl membrane complex during L-alanine uptake. Overall, the data indicate that Bra Rl is a general amino acid permease of the HAAT family. Furthermore, Bra Rl has the broadest solute specificity of any characterized bacterial amino acid transporter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.