ABSTRACT:In the present study, a conductive polyaniline-dodecyl benzene sulfonic acid (PANI-DBSA) complex, prepared by a thermal doping process, and its blends with thermoplastic polymers, prepared by melt processing, were investigated. PANI-DBSA characterization included conductivity measurements, morphology, crystallography, and thermal behavior. The blends' investigation focused on the morphology and the interaction between the components and on the resulting electrical conductivity. The level of interaction between the PANI and the matrix polymer determines the blend morphology and, thus, its electrical conductivity. Similar solubility parameters of the two polymeric components are necessary for a high level of PANI dispersion within the matrix polymer and, thus, enable the formation of conducting paths at low PANI content. The morphology of these blends is described by a two-structure hierarchy: (a) a primary structure, composed of small dispersed polyaniline particles, and (b) a short-range fine fibrillar structure, interconnecting the dispersed particles.
Significant research has been directed toward the incorporation of bioactive plant extracts or essential oils (EOs) into polymers to endow the latter with antimicrobial functionality. EOs offer a unique combination of having broad antimicrobial activity from a natural source, generally recognized as safe (GRAS) recognition in the US, and a volatile nature. However, their volatility also presents a major challenge in their incorporation into polymers by conventional high-temperature-processing techniques. Herein, antimicrobial polypropylene (PP) cast films were produced by incorporating carvacrol (a model EO) or carvacrol, loaded into halloysite nanotubes (HNTs), via melt compounding. We studied the composition-structure-property relationships in these systems, focusing on the effect of carvacrol on the composition of the films, the PP crystalline phase and its morphology and the films' mechanical and antimicrobial properties. For the first time, molecular dynamics simulations were applied to reveal the complex interactions between the components of these carvacrol-containing systems. We show that strong molecular interactions between PP and carvacrol minimize the loss of this highly-volatile EO during high-temperature polymer processing, enabling semi-industrial scale production. The resulting films exhibit outstanding antimicrobial properties against model microorganisms (Escherichia coli and Alternaria alternata). The PP/(HNTs-carvacrol) nanocomposite films, containing the carvacrol-loaded HNTs, display a higher level of crystalline order, superior mechanical properties and prolonged release of carvacrol, in comparison to PP/carvacrol blends. These properties are ascribed to the role of HNTs in these nanocomposites and their effect on the PP matrix and retained carvacrol content.
The mechanical behavior of three‐phase reinforced polyurethane (PU) foam composites was investigated. Chopped‐glass fibers, glass beads, and graphite powder were used as reinforcing materials. Emperimental results indicated that chopped‐glass fibers enhance the foam mechanical properties in tension, while glass beads and graphite powder tend to improve the mechanical properties in compression. Microscopical observations revealed that the reinforcing filler location is within the cell walls acting as a matrix reinforcement. A modified Kerner equation, based on a model that assumes the superposition of a porous matrix and a rigid particulate filler, was compared with measured elastic moduli of the three‐phase composite foams.
Polyamides are semicrystalline polymers useful in a wide range of applications in the plastics industry. Some applications require higher flexibility and workability of the polyamides, therefore, plasticizers are added to ease compounding and processing procedures and produce the desired product properties. The goal of this study was to estimate plasticizers efficiency in plasticizing Nylon 66/6 copolymer (molar ratio 80/20, respectively) using computational tools and to compare the calculated estimations to experimental results. Four plasticizers were studied: glycerin mono stearate, benzene sulfonamide, methyl 4-hydroxybenzoate (M4HB), and diethylhexyl phthalate. Plasticizers efficiency was determined by calculating cohesive energy density, solubility parameters, free volume and interaction intensities of pristine nylon, and the nylon-plasticizer blends. It was found that the efficiency of the plasticizers increases with the degree of interaction intensity between the plasticizer and polymer chains and that M4HB molecules cause the largest changes in free volume. This finding correlates with the experimental results, based on reduction of polymer glass transition temperature (T g ). The highest calculated plasticization efficiency was obtained for M4HB, for which the decrease in T g was the most significant.
The organic gelator 1,3(R):2,4(S)-dibenzylidene-d-sorbitol (DBS) self-organizes to form a 3D network at relatively low concentrations in a variety of nonpolar organic solvents and polymer melt. DBS could be transformed into a hydrogelator by introduction of hydrophilic groups, which facilitate its self-assembly in an aqueous medium. In this work, we have investigated the hydrogelators DBS-COOH and DBS-CONHNH and the organogelator DBS by molecular modeling. We have used quantum mechanics (QM) to elucidate the preferred geometry of one molecule and a dimer of each of the gelators and molecular dynamics (MD) to simulate the pure gelators and their mixtures with water. The results of the simulation indicate that the interaction between DBS-COOH molecules is the strongest of the three and its water compatibility is the highest. Therefore, DBS-COOH seems to be a better hydrogelator than DBS-CONHNH and DBS. Intermolecular H-bonding interactions are formed between DBS, DBS-COOH, and DBS-CONHNH molecules as pure substances, and they dramatically decrease in the presence of water. In contrast, the intramolecular interactions increase in water. This result indicates that in aqueous environment the molecular structure tends to be more rigid and fixed in the preferred conformation. The most significant intramolecular interaction is formed between O3 acetal and H-O6 groups. Due to the H-bonds, DBS, DBS-COOH, and DBS-CONHNH molecules form a rigid structure similar to that of liquid crystal forming molecules, which might explain their tendency to create nanofibrils. It was found that the aromatic rings do not contribute significantly to the inter- and intramolecular interactions. Their main role is probably to stiffen the molecular structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.