SYNOPSISWith the object to synthesize polyesters by enzymatic catalysis in organic media, two directions have been investigated ( 1 ) the condensation polymerization of linear o-hydroxyesters and ( 2 ) the ring-opening polymerization of lactones. The commerciallyavailable crude porcine pancreatic lipase ( P P L ) , suspended in organic solvents, was the preferred enzyme for the reactions. In order to determine the optimal conditions for the condensation polymerization, the bifunctional methyl 6-hydroxyhexanoate was used as a model compound to study the influence of the following parameters: type of the enzymecatalyst, kind of solvent, concentration, temperature, duration, size of the reaction mixture, and stirring. Film-forming polyesters with a degree of polymerization ( D P ) up to about 100 were obtained from linear aliphatic hydroxyesters in n -hexane at reflux temperature (69°C ) . Yet concurrently with the intermolecular condensation polymerization, macrolactones were also formed by intramolecular reaction. Two aromatic hydroxyesters did not react under these conditions. For the ring-opening polymerization of lactones the reaction of t-caprolactone with methanol as the preferred nucleophile, was studied. Polyesters with a D P of up to 35 were obtained in n-hexane at temperatures between 25 and 40°C. The degrees of polymerization of the polyesters were determined by comparative analyses of the end groups in the 'H-NMR spectra and by determination of molecular weights either by vapor phase osmometry, gel permeation chromatography, or intrinsic viscosity. 0 1993 John Wiley & Sons, Inc.
Self-assembled nanofibers are ubiquitous in nature and serve as inspiration for the design of supramolecular hydrogels. A multicomponent approach offers the possibility of enhancing the tunability and functionality of this class of materials. We report on the synergistic multicomponent self-assembly involving a peptide amphiphile (PA) and a 1,3:2,4-dibenzylidene-d-sorbitol (DBS) gelator to generate hydrogels with tunable nanoscale morphology, improved stiffness, enhanced self-healing, and stability to enzymatic degradation. Using induced circular dichroism of Thioflavin T (ThT), electron microscopy, small-angle neutron scattering, and molecular dynamics approaches, we confirm that the PA undergoes self-sorting, while the DBS gelator acts as an additive modifier for the PA nanofibers. The supramolecular interactions between the PA and DBS gelators result in improved bulk properties and cytocompatibility of the two-component hydrogels as compared to those of the single-component systems. The tunable mechanical properties, self-healing ability, resistance to proteolysis, and biocompatibility of the hydrogels suggest future opportunities for the hydrogels as scaffolds for tissue engineering and drug delivery vehicles.
Synthetic nanostructured materials incorporating both organic and inorganic components offer a unique, powerful, and versatile class of materials for widespread applications due to the distinct, yet complementary, nature of the intrinsic properties of the different constituents. We report a supramolecular system based on synthetic nanoclay (Laponite, Lap ) and peptide amphiphiles (PAs, PAH3 ) rationally designed to coassemble into nanostructured hydrogels with high structural integrity and a spectrum of bioactivities. Spectroscopic and scattering techniques and molecular dynamic simulation approaches were harnessed to confirm that PAH3 nanofibers electrostatically adsorbed and conformed to the surface of Lap nanodisks. Electron and atomic force microscopies also confirmed an increase in diameter and surface area of PAH3 nanofibers after coassembly with Lap . Dynamic oscillatory rheology revealed that the coassembled PAH3-Lap hydrogels displayed high stiffness and robust self-healing behavior while gas adsorption analysis confirmed a hierarchical and heterogeneous porosity. Furthermore, this distinctive structure within the three-dimensional (3D) matrix provided spatial confinement for the nucleation and hierarchical organization of high-aspect ratio hydroxyapatite nanorods into well-defined spherical clusters within the 3D matrix. Applicability of the organic–inorganic PAH3-Lap hydrogels was assessed in vitro using human bone marrow-derived stromal cells (hBMSCs) and ex vivo using a chick chorioallantoic membrane (CAM) assay. The results demonstrated that the organic–inorganic PAH3-Lap hydrogels promote human skeletal cell proliferation and, upon mineralization, integrate with the CAM, are infiltrated by blood vessels, stimulate extracellular matrix production, and facilitate extensive mineral deposition relative to the controls.
Polyamides are semicrystalline polymers useful in a wide range of applications in the plastics industry. Some applications require higher flexibility and workability of the polyamides, therefore, plasticizers are added to ease compounding and processing procedures and produce the desired product properties. The goal of this study was to estimate plasticizers efficiency in plasticizing Nylon 66/6 copolymer (molar ratio 80/20, respectively) using computational tools and to compare the calculated estimations to experimental results. Four plasticizers were studied: glycerin mono stearate, benzene sulfonamide, methyl 4-hydroxybenzoate (M4HB), and diethylhexyl phthalate. Plasticizers efficiency was determined by calculating cohesive energy density, solubility parameters, free volume and interaction intensities of pristine nylon, and the nylon-plasticizer blends. It was found that the efficiency of the plasticizers increases with the degree of interaction intensity between the plasticizer and polymer chains and that M4HB molecules cause the largest changes in free volume. This finding correlates with the experimental results, based on reduction of polymer glass transition temperature (T g ). The highest calculated plasticization efficiency was obtained for M4HB, for which the decrease in T g was the most significant.
Enzymatic polymerization of hydroxyesters in organic media has been the subject of a previous and ongoing research in our laboratory. As part of that study, four ϵ‐substituted‐ϵ‐hydroxyesters were synthesized, and then polymerized using crude porcine pancreatic lipase (PPL) in n‐hexane. These lateral‐substituted hydroxyesters polymerized enantioselectively to produce optically active oligomers and a resolved optically active unreacted monomer. It was found that with increasing bulkiness of the lateral substituent, in the order Me >Et >Ph, the enzymatic reaction becomes slower, yet the enantioselectivity is higher. The lateral‐substituted hydroxyesters were also copolymerized enzymatically with the more reactive linear methyl ϵ‐hydroxyhexanoate. Optically active copolymers were obtained, higher in molecular weight than the analogous homopolymers. © 1993 John Wiley & Sons, Inc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.