In recent years, accumulating evidence has demonstrated the important role of inflammation in cerebrovascular diseases. The inflammation can last for a long period after the initial insult. Hence, modulation of the inflammation in a wider therapeutic window is a practical approach to treat these cerebrovascular diseases. Despite the acute upregulation of many growth factors after the injury, it is not sufficient to protect and to regenerate the brain. In this mini review, we discuss major growth factors and their beneficial properties to combat the inflammation in cerebrovascular diseases. Emerging biotechnologies that facilitate the therapeutic effects of growth factors are also discussed in an effort to provide insights into the future combination therapies incorporating both central and peripheral abrogation of inflammation. Strategies designed to robustly maintain upregulation of growth factors in the injured brain and the circulation may prove as a potent regenerative approach in sequestering neuroinflammation associated with cerebrovascular diseases.
Epilepsy is a debilitating disease that impacts millions of people worldwide. While unprovoked seizures characterize its cardinal symptom, an important aspect of epilepsy that remains to be addressed is the neuropsychiatric component. It has been documented for millennia in paintings and literature that those with epilepsy can suffer from bouts of aggression, depression, and other psychiatric ailments. Current treatments for epilepsy include the use of antiepileptic drugs and surgical resection. Antiepileptic drugs reduce the overall firing of the brain to mitigate the rate of seizure occurrence. Surgery aims to remove a portion of the brain that is suspected to be the source of aberrant firing that leads to seizures. Both options treat the seizure-generating neurological aspect of epilepsy, but fail to directly address the neuropsychiatric components. A promising new treatment for epilepsy is the use of stem cells to treat both the biological and psychiatric components. Stem cell therapy has been shown efficacious in treating experimental models of neurological disorders, including Parkinson’s disease, and neuropsychiatric diseases, such as depression. Additional research is necessary to see if stem cells can treat both neurological and neuropsychiatric aspects of epilepsy. Currently, there is no animal model that recapitulates all the clinical hallmarks of epilepsy. This could be due to difficulty in characterizing the neuropsychiatric component of the disease. In advancing stem cell therapy for treating epilepsy, experimental testing of the safety and efficacy of allogeneic and autologous transplantation will require the optimization of cell dosage, delivery, and timing of transplantation in a clinically relevant model of epilepsy with both neurological and neuropsychiatric symptoms of the disease as the primary outcome measures.
Deep brain stimulation (DBS) has emerged as a revolutionary treatment option for essential tremor (ET), Parkinson's disease (PD), idiopathic dystonia, and severe obsessive-compulsive disorder (OCD). This article reviews the historical foundations of DBS including basal ganglia pathophysiological models, classic principles of electrical stimulation, technical components of the DBS system, treatment risks, and future directions for DBS. Chronic high frequency stimulation induces a number of functional changes from fast physiological to slower metabolic effects and ultimately leads to structural reorganization of the brain, so-called neuroplasticity. Examples of each of these fast, slow, and long-term changes are given in the context of Parkinson's disease where these mechanisms have perhaps been the most intensely investigated. In particular, details of striatal dopamine release, expression of trophic factors, and a possible neuroprotective mechanism of DBS are highlighted. We close with a brief discussion of technical and clinical considerations for improvement. Deep brain stimulation will continue to offer a reversible and safe therapeutic option for a host of neurological conditions and remains one of the best windows into human brain physiology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.