Preclinical and clinical development of numerous small molecules is prevented by their poor aqueous solubility, limited absorption, and oral bioavailability. Herein, we disclose a general prodrug approach that converts promising lead compounds into aminoalkoxycarbonyloxymethyl (amino AOCOM) ethersubstituted analogues that display significantly improved aqueous solubility and enhanced oral bioavailability, restoring key requirements typical for drug candidate profiles. The prodrug is completely independent of biotransformations and animalindependent because it becomes an active compound via a pHtriggered intramolecular cyclization−elimination reaction. As a proof-of-concept, the utility of this novel amino AOCOM ether prodrug approach was demonstrated on an antimalarial compound series representing a variety of antimalarial 4(1H)-quinolones, which entered and failed preclinical development over the last decade. With the amino AOCOM ether prodrug moiety, the 3-aryl-4(1H)-quinolone preclinical candidate was shown to provide single-dose cures in a rodent malaria model at an oral dose of 3 mg/kg, without the use of an advanced formulation technique.
Malaria deaths have been decreasing over the last 10-15 years, with global mortality rates having fallen by 47% since 2000. While the World Health Organization (WHO) recommends the use of artemisinin-based combination therapies (ACTs) to combat malaria, the emergence of artemisinin resistant strains underscores the need to develop new antimalarial drugs. Recent in vivo efficacy improvements of the historical antimalarial ICI 56,780 have been reported, however, with the poor solubility and rapid development of resistance, this compound requires further optimization. A series of piperazine-containing 4(1H)-quinolones with greatly enhanced solubility were developed utilizing structure-activity relationship (SAR) and structure-property relationship (SPR) studies. Furthermore, promising compounds were chosen for an in vivo scouting assay to narrow selection for testing in an in vivo Thompson test. Finally, two piperazine-containing 4(1H)-quinolones were curative in the conventional Thompson test and also displayed in vivo activity against the liver stages of the parasite.
The pathologic process of chronic phase traumatic brain injury is associated with spreading inflammation, cell death, and neural dysfunction. It is thought that sequestration of inflammatory mediators can facilitate recovery and promote an environment that fosters cellular regeneration. Studies have targeted post-traumatic brain injury inflammation with the use of pharmacotherapy and cell therapy. These therapeutic options are aimed at reducing the edematous and neurodegenerative inflammation that have been associated with compromising the integrity of the blood-brain barrier. Although studies have yielded positive results from anti-inflammatory pharmacotherapy and cell therapy individually, emerging research has begun to target inflammation using combination therapy. The joint use of anti-inflammatory drugs alongside stem cell transplantation may provide better clinical outcomes for traumatic brain injury patients. Despite the promising results in this field of research, it is important to note that most of the studies mentioned in this review have completed their studies using animal models. Translation of this research into a clinical setting will require additional laboratory experiments and larger preclinical trials.
In recent years, accumulating evidence has demonstrated the important role of inflammation in cerebrovascular diseases. The inflammation can last for a long period after the initial insult. Hence, modulation of the inflammation in a wider therapeutic window is a practical approach to treat these cerebrovascular diseases. Despite the acute upregulation of many growth factors after the injury, it is not sufficient to protect and to regenerate the brain. In this mini review, we discuss major growth factors and their beneficial properties to combat the inflammation in cerebrovascular diseases. Emerging biotechnologies that facilitate the therapeutic effects of growth factors are also discussed in an effort to provide insights into the future combination therapies incorporating both central and peripheral abrogation of inflammation. Strategies designed to robustly maintain upregulation of growth factors in the injured brain and the circulation may prove as a potent regenerative approach in sequestering neuroinflammation associated with cerebrovascular diseases.
Epilepsy is a debilitating disease that impacts millions of people worldwide. While unprovoked seizures characterize its cardinal symptom, an important aspect of epilepsy that remains to be addressed is the neuropsychiatric component. It has been documented for millennia in paintings and literature that those with epilepsy can suffer from bouts of aggression, depression, and other psychiatric ailments. Current treatments for epilepsy include the use of antiepileptic drugs and surgical resection. Antiepileptic drugs reduce the overall firing of the brain to mitigate the rate of seizure occurrence. Surgery aims to remove a portion of the brain that is suspected to be the source of aberrant firing that leads to seizures. Both options treat the seizure-generating neurological aspect of epilepsy, but fail to directly address the neuropsychiatric components. A promising new treatment for epilepsy is the use of stem cells to treat both the biological and psychiatric components. Stem cell therapy has been shown efficacious in treating experimental models of neurological disorders, including Parkinson’s disease, and neuropsychiatric diseases, such as depression. Additional research is necessary to see if stem cells can treat both neurological and neuropsychiatric aspects of epilepsy. Currently, there is no animal model that recapitulates all the clinical hallmarks of epilepsy. This could be due to difficulty in characterizing the neuropsychiatric component of the disease. In advancing stem cell therapy for treating epilepsy, experimental testing of the safety and efficacy of allogeneic and autologous transplantation will require the optimization of cell dosage, delivery, and timing of transplantation in a clinically relevant model of epilepsy with both neurological and neuropsychiatric symptoms of the disease as the primary outcome measures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.