Biodegradable drug-delivery systems can be formulated to release drug for hours to years and have been used for the controlled release of medications in animals and humans. An important consideration in developing a drug-delivery matrix is knowledge of the long-term stability of the form of the drug and matrix after formulation and any changes that might occur to the drug throughout the delivery process. Solid-state NMR spectroscopy is an effective technique for studying the state of both the drug and the matrix. Two systems that have been studied using solid-state NMR spectroscopy are presented. The first system studied involved bupivacaine, a local anesthetic compound, which was incorporated into microspheres composed of tristearin and encapsulated using a solid protein matrix. Solid-state 13C NMR spectroscopy was used to investigate the solid forms of bupivacaine in their bulk form or as incorporated into the tristearin/protein matrix. Bupivacaine free base and bupivacaine-HCl have very different solid-state NMR spectra, indicating that the molecules of these compounds pack in different crystal forms. In the tristearin matrix, the drug form could be determined at levels as low as 1:100 (w/w), and the form of bupivacaine was identified upon loading into the tristearin/protein matrix. In the second case, the possibility of using solid-state 13C NMR spectroscopy to characterize biomolecules lyophilized within polymer matrices is evaluated by studying uniformly 13C-labeled asparagine (Asn) in 1:250 (w/w) formulations with poly(vinyl pyrrolidone) (PVP) and poly(vinyl alcohol) (PVA). This work shows the capability of solid-state NMR spectroscopy to study interactions between the amino acid and the polymer matrix for synthetic peptides and peptidomimetics containing selective 13C labeling at the Asn residue.
Liposphere delivery of local anesthetic drugs may be well suited for site-specific pharmacotherapy of neural tissue to produce SLAB. Dose-dependent effects in duration of action may include lipophilic tissue storage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.