As climate changes, the main changes in precipitation will likely be in the intensity, frequency, and duration of events, but these characteristics are seldom analyzed in observations or models. Why does it rain? If a parcel of air rises, it expands in the lower pressure, cools, and therefore condenses moisture in the parcel, producing cloud and, ultimately, rainfall-or perhaps snowfall. So a key ingredient is certainly the many and varied mechanisms for causing air to rise. These range from orographic uplifting as air flows over mountain ranges, to a host of instabilities in the atmosphere that arise from unequal heating of the atmosphere, to potential vorticity dynamics. The instabilities include those that result directly in vertical mixing, such as convective instabilities, to those associated with the meridional heating disparities that give rise to baroclinic instabilities and the ubiquitous fronts and low and high pressure weather systems. Thus cold air AFFILIATIONS: TRENBERTH, DAI, RASMUSSEN, AND PARSONS-The
The International H2O Project (IHOP_2002) is one of the largest North American meteorological field experiments in history. From 13 May to 25 June 2002, over 250 researchers and technical staff from the United States, Germany, France, and Canada converged on the Southern Great Plains to measure water vapor and other atmospheric variables. The principal objective of IHOP_2002 is to obtain an improved characterization of the time-varying three-dimensional water vapor field and evaluate its utility in improving the understanding and prediction of convective processes. The motivation for this objective is the combination of extremely low forecast skill for warm-season rainfall and the relatively large loss of life and property from flash floods and other warm-season weather hazards. Many prior studies on convective storm forecasting have shown that water vapor is a key atmospheric variable that is insufficiently measured. Toward this goal, IHOP_2002 brought together many of the existing operational and new state-of-the-art research water vapor sensors and numerical models. The IHOP_2002 experiment comprised numerous unique aspects. These included several instruments fielded for the first time (e.g., reference radiosonde); numerous upgraded instruments (e.g., Wyoming Cloud Radar); the first ever horizontal-pointing water vapor differential absorption lidar (DIAL; i.e., Leandre II on the Naval Research Laboratory P-3), which required the first onboard aircraft avoidance radar; several unique combinations of sensors (e.g., multiple profiling instruments at one field site and the German water vapor DIAL and NOAA/Environmental Technology Laboratory Doppler lidar on board the German Falcon aircraft); and many logistical challenges. This article presents a summary of the motivation, goals, and experimental design of the project, illustrates some preliminary data collected, and includes discussion on some potential operational and research implications of the experiment.
Leading NWP centers have agreed to create a database of their operational ensemble forecasts and open access to researchers to accelerate the development of probabilistic forecasting of high-impact weather.Objectives and cOncept. During the past decade, ensemble forecasting has undergone rapid development in all parts of the world. Ensembles are now generally accepted as a reliable approach to forecast confidence estimation, especially in the case of high-impact weather. Their application to quantitative probabilistic forecasting is also increasing rapidly. In addition, there has been a strong interest in the development of multimodel ensembles, whether based on a set of single (deterministic) forecasts from different systems, or on a set of ensemble forecasts from different systems (the so-called superensemble). The hope is that multimodel ensembles will provide an affordable approach to the classical goal of increasing the hit rate for prediction of high-impact weather without increasing the false-alarm rate. This is being taken further within The Observing System Research and Predictability Experiment (THORPEX), a major component of the World Weather Research Programme (WWRP) under the World Meteorological Organization (WMO). A key goal of THORPEX is to accelerate improvements in
The PECAN field campaign assembled a rich array of observations from lower-tropospheric profiling systems, mobile radars and mesonets, and aircraft over the Great Plains during June-July 2015 to better understand nocturnal mesoscale convective systems and their relationship with the stable boundary layer, the low-level jet, and atmospheric bores.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.