Statistical models are frequently used to estimate molecular properties, e.g., to establish quantitative structure-activity and structure-property relationships. For such models, interpretability, knowledge of the domain of applicability, and an estimate of confidence in the predictions are essential. We develop and validate a method for the interpretation of kernel-based prediction models. As a consequence of interpretability, the method helps to assess the domain of applicability of a model, to judge the reliability of a prediction, and to determine relevant molecular features. Increased interpretability also facilitates the acceptance of such models. Our method is based on visualization: For each prediction, the most contributing training samples are computed and visualized. We quantitatively show the effectiveness of our approach by conducting a questionnaire study with 71 participants, resulting in significant improvements of the participants' ability to distinguish between correct and incorrect predictions of a Gaussian process model for Ames mutagenicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.