The paper solves the problem of optimal portfolio choice when the parameters of the asset returns distribution, for example the mean vector and the covariance matrix, are unknown and have to be estimated by using historical data on asset returns. Our new approach employs the Bayesian posterior predictive distribution which is the distribution of future realizations of asset returns given the observable sample. The parameters of posterior predictive distributions are functions of the observed data values and, consequently, the solution of the optimization problem is expressed in terms of data only and does not depend on unknown quantities. By contrast, the optimization problem of the traditional approach is based on unknown quantities which are estimated in the second step, and lead to a suboptimal solution. We also derive a very useful stochastic representation of the posterior predictive distribution whose application not only gives the solution of the considered optimization problem, but also provides the posterior predictive distribution of the optimal portfolio return which can be used to construct a prediction interval. A Bayesian efficient frontier, the set of optimal portfolios obtained by employing the posterior predictive distribution, is constructed as well. Theoretically and using real data we show that the Bayesian efficient frontier outperforms the sample efficient frontier, a common estimator of the set of optimal portfolios which is known to be overoptimistic.
In this paper, we consider the estimation of the weights of tangent portfolios from the Bayesian point of view assuming normal conditional distributions of the logarithmic returns. For diffuse and conjugate priors for the mean vector and the covariance matrix, we derive stochastic representations for the posterior distributions of the weights of tangent portfolio and their linear combinations. Separately, we provide the mean and variance of the posterior distributions, which are of key importance for portfolio selection. The analytic results are evaluated within a simulation study, where the precision of coverage intervals is assessed.
In this paper, we consider the estimation of the three determining parameters of the efficient frontier, the expected return, and the variance of the global minimum variance portfolio and the slope parameter, from a Bayesian perspective. Their posterior distribution is derived by assigning the diffuse and the conjugate priors to the mean vector and the covariance matrix of the asset returns and is presented in terms of a stochastic representation. Furthermore, Bayesian estimates together with the standard uncertainties for all three parameters are provided, and their asymptotic distributions are established. All obtained findings are applied to real data, consisting of the returns on assets included into the S&P 500. The empirical properties of the efficient frontier are then examined in detail.
We consider the estimation of the multi-period optimal portfolio obtained by maximizing an exponential utility. Employing Jeffreys' non-informative prior and the conjugate informative prior, we derive stochastic representations for the optimal portfolio weights at each time point of portfolio reallocation. This provides a direct access not only to the posterior distribution of the portfolio weights but also to their point estimates together with uncertainties and their asymptotic distributions. Furthermore, we present the posterior predictive distribution for the investor's wealth at each time point of the investment period in terms of a stochastic representation for the future wealth realization. This in turn makes it possible to use quantile-based risk measures or to calculate the probability of default. We apply the suggested Bayesian approach to assess the uncertainty in the multi-period optimal portfolio by considering assets from the FTSE 100 in the weeks after the British referendum to leave the European Union. The behaviour of the novel portfolio estimation method in a precarious market situation is illustrated by calculating the predictive wealth, the risk associated with the holding portfolio, and the default probability in each period.
The paper solves the problem of optimal portfolio choice when the parameters of the asset returns distribution, like the mean vector and the covariance matrix are unknown and have to be estimated by using historical data of the asset returns. The new approach employs the Bayesian posterior predictive distribution which is the distribution of the future realization of the asset returns given the observable sample. The parameters of the posterior predictive distributions are functions of the observed data values and, consequently, the solution of the optimization problem is expressed in terms of data only and does not depend on unknown quantities. In contrast, the optimization problem of the traditional approach is based on unknown quantities which are estimated in the second step leading to a suboptimal solution.We also derive a very useful stochastic representation of the posterior predictive distribution whose application leads not only to the solution of the considered optimization problem, but provides the posterior predictive distribution of the optimal portfolio return used to construct a prediction interval. A Bayesian efficient frontier, a set of optimal portfolios obtained by employing the posterior predictive distribution, is constructed as well.Theoretically and using real data we show that the Bayesian efficient frontier outperforms the sample efficient frontier, a common estimator of the set of optimal portfolios known to be overoptimistic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.