According to the literature, negations such as "not" or "don't" reduce the accessibility in memory of the concepts under their scope. Moreover, negations applied to action contents (e.g., "don't write the letter") impede the activation of motor processes in the brain, inducing "disembodied" representations. These facts provide important information on the behavioral and neural consequences of negations. However, how negations themselves are processed in the brain is still poorly understood. In two electrophysiological experiments, we explored whether sentential negation shares neural mechanisms with action monitoring or inhibition. Human participants read action-related sentences in affirmative or negative form ("now you will cut the bread" vs "now you will not cut the bread") while performing a simultaneous Go/NoGo task. The analysis of the EEG rhythms revealed that theta oscillations were significantly reduced for NoGo trials in the context of negative sentences compared with affirmative sentences. Given the fact that theta oscillations are often considered as neural markers of response inhibition processes, their modulation by negative sentences strongly suggests that negation uses neural resources of response inhibition. We propose a new approach that views the syntactic operator of negation as relying on the neural machinery of high-order action-monitoring processes.
The two-step process account of negation understanding posits an initial representation of the negated events, followed by a representation of the actual state of events. On the other hand, behavioral and neurophysiological studies provided evidence that linguistic negation suppresses or reduces the activation of the negated events, contributing to shift attention to the actual state of events. However, the specific mechanism of this suppression is poorly known. Recently, based on the brain organization principle of neural reuse (
Anderson, 2010
), it has been proposed that understanding linguistic negation partially relies upon the neurophysiological mechanisms of response inhibition. Specifically, it was reported that negated action-related sentences modulate EEG signatures of response inhibition (
de Vega et al., 2016
;
Beltrán et al., 2018
). In the current EEG study, we ponder whether the reusing of response inhibition processes by negation is constrained to action-related contents or consists of a more general-purpose mechanism. To this end, we employed the same dual-task paradigm as in our prior study—a Go/NoGo task embedded into a sentence comprehension task—but this time including both action and non-action sentences. The results confirmed that the increase of theta power elicited by NoGo trials was modulated by negative sentences, compared to their affirmative counterparts, and this polarity effect was statistically similar for both action- and non-action-related sentences. Thus, a general-purpose inhibitory control mechanism, rather than one specific for action language, is likely operating in the comprehension of sentential negation to produce the transition between alternative representations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.