Regeneration of functional polymer surfaces after damage or contamination is an unresolved scientific challenge, and also of practical importance. In this proof-of-concept study, we present a method to regenerate a functional surface property using a polymer multi-layer architecture. This is exemplified using antimicrobially active surfaces. The idea is to shed the top layer of the polymer layer stack, like a reptile shedding its skin. The proof-of-concept stack consists of two antimicrobial layers and a degradable interlayer. Shedding of the top layer is enabled by degrading that interlayer. The shedding process was analyzed by quantitative fluorescence microscopy, ellipsometry, and FTIR spectroscopy. Antimicrobial assays revealed that the functionality of the emerging antimicrobial layer was fully retained after shedding.
The synthesis and characterization of a series of green‐, blue‐, and red‐fluorescent exo‐oxanorbornene acid and imide monomers carrying nitrobenzofurazan, coumarin, and rhodamin B, respectively, as fluorophores are presented. These monomers carry oxanorbornene as polymerizable unit, and are readily copolymerized with bioactive functional oxanorbornene monomers by ring‐opening metathesis polymerization, as demonstrated by gel permeation chromatography and NMR spectroscopy. Due to the ease of synthesis of these monomers, and their cost‐effectiveness compared many to other fluorescent probes, they are useful for biomaterial applications.
A series of asymmetrically disubstituted diitaconate monomers is presented. Starting from itaconic anhydride, functional groups could be placed selectively at the two nonequivalent carbonyl groups. By using 2D NMR spectroscopy, it was shown that the first functionalization step occurred at the carbonyl group in the β position to the double bond. These monomers were copolymerized with N,N-dimethylacrylamide (DMAA) to yield polymer-based synthetic mimics of antimicrobial peptides (SMAMPs). They were obtained by free radical polymerization, a metal-free process, and still maintained facial amphiphilicity at the repeat unit level. This eliminates the need for laborious metal removal and is advantageous from a regulatory and product safety perspective. The poly(diitaconate-co-DMAA) copolymers obtained were statistical to alternating, and the monomer feed ratio roughly matched that of the repeat unit content of the copolymers. Investigations of varied R group hydrophobicity, repeat unit ratio, and molecular mass on antimicrobial activity against Escherichia coli and on compatibility with human keratinocytes showed that the polymers with the longest R groups and lowest DMAA content were the most antimicrobial and hemolytic. This is in agreement with the biological activity of previously reported SMAMPs. Thus, the design concept of facial amphiphilicity has successfully been transferred, but the selectivity of these polymers for bacteria over mammalian cells still needs to be optimized.
Facially amphiphilic polymers carrying cationic and hydrophobic groups on the same repeat unit have shown promising antimicrobial activity and biocompatibility, yet they are prone to suffer from protein adhesion which may induce biofilm formation. To overcome this problem, poly(diitaconate)-based copolymers with cationic/hydrophobic and protein-repellent/charge-neutral repeat units are synthesized. The bioactivity profile of surface-attached polymer networks made from these copolymers depends on the ratio of the cationic and charge-neutral repeat units. In all cases, the protein adhesion is substantially reduced compared to purely cationic polymers. At a 50:50 ratio, the polymer coatings are partially protein-repellent and antimicrobial, yet slightly cell toxic. At an intermediate composition of 30:70, they are still antimicrobial and the cell compatibility is substantially improved. The long-term stability of these materials still has to be determined to judge their suitability for medical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.