A series of asymmetrically disubstituted diitaconate monomers is presented. Starting from itaconic anhydride, functional groups could be placed selectively at the two nonequivalent carbonyl groups. By using 2D NMR spectroscopy, it was shown that the first functionalization step occurred at the carbonyl group in the β position to the double bond. These monomers were copolymerized with N,N-dimethylacrylamide (DMAA) to yield polymer-based synthetic mimics of antimicrobial peptides (SMAMPs). They were obtained by free radical polymerization, a metal-free process, and still maintained facial amphiphilicity at the repeat unit level. This eliminates the need for laborious metal removal and is advantageous from a regulatory and product safety perspective. The poly(diitaconate-co-DMAA) copolymers obtained were statistical to alternating, and the monomer feed ratio roughly matched that of the repeat unit content of the copolymers. Investigations of varied R group hydrophobicity, repeat unit ratio, and molecular mass on antimicrobial activity against Escherichia coli and on compatibility with human keratinocytes showed that the polymers with the longest R groups and lowest DMAA content were the most antimicrobial and hemolytic. This is in agreement with the biological activity of previously reported SMAMPs. Thus, the design concept of facial amphiphilicity has successfully been transferred, but the selectivity of these polymers for bacteria over mammalian cells still needs to be optimized.
Polyesters, such as poly (butylene terephthalate) (PBT), owe a rather low melt strength, which is considered as not beneficial for foaming. To overcome this issue, a typical attempt is the incorporation of chemical modifications—so‐called chain extenders (CE)—in the reactive extrusion process. In this study, the reaction kinetic variables are investigated depending on the material and process parameters. For this purpose, different series of experiments are performed with varying PBT with different molecular weights and the commonly used CE, Joncryl ADR4468, on a micro compounder. The screw force is recorded and analyzed using an Avrami and an Arrhenius plot. First, the amount of CE is systematically varied. To study the course of the reaction in more detail, the reaction is stopped in a series of measurements (10, 30, 60, and 90 s after complete filling). Gel permeation chromatography (GPC), Fourier transform infrared spectroscopy (FT‐IR), and Raman spectra are recorded. In the second series, the effect of processing temperatures between 250 and 270 °C is investigated, and finally, in the third series, the average molecular weight of PBT is varied. It could be shown that the activation energy seems to be dependent on the initial molecular weight; lower molecular weights result in lower activation energy.
Asymmetrically substituted poly(diitaconate) copolymers are synthesized from 1‐((N‐tert‐butoxycarbonyl)‐2‐aminoethyl)‐4‐propyl diitaconate (PrIA) and different comonomers (N,N‐dimethyl‐acrylamide, DMAA; acrylic acid; or ((N‐tert‐butoxycarbonyl)‐2‐aminoethyl)methacrylate) by reversible addition–fragmentation chain transfer polymerization (RAFT). The RAFT copolymerization parameters of PrIA and DMAA are rDMAA = 0.49 and rPrIA = 0.17, compared to rDMAA = 0.52 and rPrIA = 0.54 obtained by free radical copolymerization (FRP). Thus, the RAFT process has a stronger trend to alternating polymerization than the FRP process. The polydispersity index of the RAFT copolymers is around 1.2–1.8, compared to 2.8–2.9 for the corresponding FRP copolymers. After removal of the tert‐butoxycarbonyl protective groups, antimicrobially active synthetic mimics of antimicrobial peptides are obtained. The thus activated poly(PrIA‐co‐DMAA) copolymers (repeat unit ratio 1:1) have an increasing activity against Escherichia coli and Staphylococcus aureus with increasing molar mass. The RAFT copolymers are slightly more active and less toxic than comparable FRP polymers, leading to a higher selectivity for bacteria over mammalian cells. Higher molar fractions of PrIA in poly(PrIA‐co‐DMAA) copolymers (up to 80 mol%) do not increase their antimicrobial activity; reduction of the BuIA content in poly(BuIA‐DMAA) (down to 10 mol%) leads to a loss of activity against both E. coli and S. aureus.
Fast hydrolyzable polyesters are promising candidates as biodegradable plastics degrading to carbon dioxide, water, and biomass in the presence of oxygen in a suitable environment. The rate-determining step of biodegradation is the fragmentation of polyesters to lower mass fragments by hydrolysis, which in the second step undergo bioassimilation. Polyesters with a balance of good mechanical properties and fast hydrolyzability are urgently needed as a sustainable solution to the problem of plastic pollution and persistent microplastics when used in packaging and agricultural applications. Aromatic polyesters, such as poly(butylene terephthalate) (PBT), are mechanically strong but require harsh hydrolysis conditions, making them nonbiodegradable. The trend is mostly the opposite for aliphatic polyesters. We present in this work an aromatic polyester, a constitutional isomer of PBT [poly(1,4-benzenedimethylene succinate) (PBDMS)], and its copolymers (PB x BDM y S) in which aliphatic ester units balance the mechanical, thermal, and hydrolysis properties. PBDMS was prepared from 1,4-benzenedimethanol (BDM) and succinic acid (S) via two-step polycondensation. Its copolyesters with 1,4-butanediol (B) as a comonomer are also presented. High-molecular-weight PBDMS showed a glass-transition temperature of 6 °C and a melting temperature around 100 °C, very high thermal stability, and melt processability. The structure−property relationship of such polyesters was intensively studied, focusing on the impact of molecular composition. The stress−strain behavior of these (co-)polyesters largely depended on the content of BDM and covered a wide range from ductile to elastic to brittle materials. The films of these polyesters showed much faster hydrolysis under basic conditions, making them promising for future detailed degradation studies under different environmental conditions.
Nowadays, numerous techniques are used to quantify the resistance of cellular polymers against a thermal load. These techniques differ in significance and reproducibility and are all dependent on foam density, structure (i.e., cell size and -distribution) and sample geometry. Very different behaviors are expected for extrusion- and bead foams, as well as for amorphous and semi-crystalline polymers. Moreover, established tests use temperature ramps which would lead to temperature gradients within the sample and thus to faulty results. In this study, we developed a new approach from an engineering perspective to minimize these influences. In this approach, the resistance against the thermal load is derived from a steady creep test with defined temperature steps under a mechanical load, which is specifically set for each foam sample depending on its static compression behavior at room temperature. The two-stage test therefore combines (i) a standard quasi-static compression test at room temperature and (ii) a creep test with stepwise increased thermal loading. For each foam type, a rather low mechanical load (stress) is determined from the quasi-static compression test at room temperature; low enough to remain below the collapse strength and avoid irreversible deformation (i.e., buckling and/or breaking of the cell walls). This load is then applied in a creep test where the temperature is increased in defined steps from room temperature to a temperature close to T g or T m . The stepwise increase and holding of the temperature for a defined time enables a homogeneous temperature in the test specimen. The approach was applied to (i) polystyrene extrusion and bead foams (i.e., XPS and EPS), which have different foam structure, (ii) amorphous and semi-crystalline bead foams of polystyrene (EPS) and polypropylene (EPP), (iii) bead foams with different densities (30, 60, 120, and 210 kg/m3) and (iv) to a new type of bead foam made of the engineering polymer polybutylene terephthalate (E-PBT). The termination criterion for the test is defined as the temperature at which a relative compression of 10% is reached in the creep test with temperature steps. We suggest calling it the heat stability temperature T HS. For the studied foams, the procedure delivers characteristic T HS values that allow a good comparison between different polymer matrices and densities. The heat stability temperature T HS of amorphous PS foams (i.e., XPS and EPS) was determined to be 98 °C, which is close to the glass transition temperature T g . Using the same approach, values of 99–107 °C were determined for EPP and 186 °C for the semi-crystalline bead foam E-PBT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.