Nowadays, numerous techniques are used to quantify the resistance of cellular polymers against a thermal load. These techniques differ in significance and reproducibility and are all dependent on foam density, structure (i.e., cell size and -distribution) and sample geometry. Very different behaviors are expected for extrusion- and bead foams, as well as for amorphous and semi-crystalline polymers. Moreover, established tests use temperature ramps which would lead to temperature gradients within the sample and thus to faulty results. In this study, we developed a new approach from an engineering perspective to minimize these influences. In this approach, the resistance against the thermal load is derived from a steady creep test with defined temperature steps under a mechanical load, which is specifically set for each foam sample depending on its static compression behavior at room temperature. The two-stage test therefore combines (i) a standard quasi-static compression test at room temperature and (ii) a creep test with stepwise increased thermal loading. For each foam type, a rather low mechanical load (stress) is determined from the quasi-static compression test at room temperature; low enough to remain below the collapse strength and avoid irreversible deformation (i.e., buckling and/or breaking of the cell walls). This load is then applied in a creep test where the temperature is increased in defined steps from room temperature to a temperature close to T g or T m . The stepwise increase and holding of the temperature for a defined time enables a homogeneous temperature in the test specimen. The approach was applied to (i) polystyrene extrusion and bead foams (i.e., XPS and EPS), which have different foam structure, (ii) amorphous and semi-crystalline bead foams of polystyrene (EPS) and polypropylene (EPP), (iii) bead foams with different densities (30, 60, 120, and 210 kg/m3) and (iv) to a new type of bead foam made of the engineering polymer polybutylene terephthalate (E-PBT). The termination criterion for the test is defined as the temperature at which a relative compression of 10% is reached in the creep test with temperature steps. We suggest calling it the heat stability temperature T HS. For the studied foams, the procedure delivers characteristic T HS values that allow a good comparison between different polymer matrices and densities. The heat stability temperature T HS of amorphous PS foams (i.e., XPS and EPS) was determined to be 98 °C, which is close to the glass transition temperature T g . Using the same approach, values of 99–107 °C were determined for EPP and 186 °C for the semi-crystalline bead foam E-PBT.
Expanded polymeric beads offer the advantage of being able to produce parts with complex geometries through a consolidation process. However, established polymeric beads are made of thermoplastics, deform and melt beyond their temperature services. In this manuscript, a new technique is proposed to fabricate expandable epoxy beads (EEBs), then expand and fuse them to produce epoxy particle foams (EPFs). This technique is called solid-state carbamate foaming technique. For production of EEBs, a mixture of epoxy, carbamate and hardener is prepared and poured into a 10 mL syringe. The mixture is manually extruded into 60 °C water to obtain a cylindric shape. The extrudate is then further cured to obtain an epoxy oligomer behaving rheological tan delta 3 and 2 at 60 °C. The extrudate is cut into pellets to obtain EEBs. The EEBs are then loaded into an aluminum mold and placed in an oven at 160 °C to expand, fuse to obtain EPFs of 212 kg/m3 and 258 kg/m3. The obtained EPFs provide a Tg of 150–154 °C. The fusion boundaries in EPFs are well formed. Thus, the produced EPFs exhibit a compressive modulus of 50–70 MPa, with a torsion storage modulus at 30 °C of 34–56 MPa.
Closed-cell bead foams with their hierarchical geometrical structure are a challenge for statistical reconstruction and finite element modelling. For the purpose of providing the fundamental micro- and meso-structural descriptors - wall thickness, cell as well as bead volume and sphericity - of expanded polypropylene bead foams of different density, 3D-images from X-ray computed tomography are analyzed. A detailed description of development and application of an image analysis methodology for the determination of feature distributions from CT-scans of different level of detail is provided. The methods are based on off-the-shelf algorithms provided by the open-source package distribution FIJI. It should be highlighted, that beside essential methods such as thresholding, euclidean distance and watershed transformation here the Trainable WEKA segmentation is applied for separating material phases in the images. Although the methods elaborated are generally very case sensitive, the reader benefits from the validation strategies applied, so that development of individual methods into the direction of reliability, repeatability and automation is supported.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.