A technique is described that allows unimodal function optimization methods to be extended to locate all optima of multimodal problems efficiently. We describe an algorithm based on a traditional genetic algorithm (GA). This technique involves iterating the GA but uses knowledge gained during one iteration to avoid re-searching, on subsequent iterations, regions of problem space where solutions have already been found. This gain is achieved by applying a fitness derating function to the raw fitness function, so that fitness values are depressed in the regions of the problem space where solutions have already been found. Consequently, the likelihood of discovering a new solution on each iteration is dramatically increased. The technique may be used with various styles of GAs or with other optimization methods, such as simulated annealing. The effectiveness of the algorithm is demonstrated on a number of multimodal test functions. The technique is at least as fast as fitness sharing methods. It provides an acceleration of between 1 and l0p on a problem with p optima, depending on the value of p and the convergence time complexity.
At present, WLANs supporting broadband multimedia communication are being developed and standardized around the world. Standards include HIPERLAN/2, defined by ETSI BRAN, 802.11a, defined by the IEEE, and HiSWANa defined by MMAC. These systems provide channel adaptive data rates up to 54 Mb/s (in a 20 MHz channel spacing) in the 5 GHz radio band. In this article an overview of the HIPERLAN/2 and 802.11a standards is presented together with software simulated physical layer performance results for each of the defined transmission modes. Furthermore, the differences between these two standards are highlighted (packet size, upper protocol layers etc.), and the effects of these differences on throughput are analyzed and discussed.
Restoring a scene distorted by atmospheric turbulence is a challenging problem in video surveillance. The effect, caused by random, spatially varying, perturbations, makes a model-based solution difficult and in most cases, impractical. In this paper, we propose a novel method for mitigating the effects of atmospheric distortion on observed images, particularly airborne turbulence which can severely degrade a region of interest (ROI). In order to extract accurate detail about objects behind the distorting layer, a simple and efficient frame selection method is proposed to select informative ROIs only from good-quality frames. The ROIs in each frame are then registered to further reduce offsets and distortions. We solve the space-varying distortion problem using region-level fusion based on the dual tree complex wavelet transform. Finally, contrast enhancement is applied. We further propose a learning-based metric specifically for image quality assessment in the presence of atmospheric distortion. This is capable of estimating quality in both full- and no-reference scenarios. The proposed method is shown to significantly outperform existing methods, providing enhanced situational awareness in a range of surveillance scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.