New pure component parameters are presented for the MOSCED limiting activity coefficient model for 133 solvents with an absolute average deviation of 10.6% to experimental literature data. The MOSCED model has been applied to solid-liquid equilibria correlation and compared with the experimental data available in the literature. The correlation of solubility of 26 solids in organic solvents has an average absolute deviation of 25%. This compares favorably to the prediction of the modified UNIFAC model.
There are now available a variety of tunable solvents; these have been used extensively for extractions and in a variety of materials applications. Our focus has been to apply these techniques to chemical reactions to take advantage of the special properties available, primarily for sustainable technology, to create processes that are potentially more benign and more advantageous. We report here our work in using supercritical fluids, near-critical fluids, and gas-expanded liquids to couple organic reactions with separations. In this paper, we review applications involving improved transport, catalyst recycling, and product separation as well as the in situ generation of catalysts. Although such tunable solvents are in no way a panacea, they do offer the chemical community alternatives that can often be applied creatively to many reaction opportunities.
The phase equilibria of dilute aqueous solutions are treated separately from those of dilute organic systems due to water's unique structure and hydrogen-bonding characteristics. As a result, traditional predictive methods (UNIFAC, ASOG, etc.) tend to be only moderately successful. In addition to inverse solubility measurements, we describe new direct and indirect techniques for precisely measuring these values which are more accurate. A database is compiled from data measured by using these techniques. The data were evaluated and suspect points removed. The data were correlated linearly with the solute solvatochromic R, , and π*, solute and solvent molar volume, solute vapor pressure, and the solute gas-liquid partition coefficient between hexadecane and an inert gas phase, log L 16 . The correlation fits the data to within an average absolute deviation of 0.294 ln units. The correlation provides a direct and relatively accurate method for estimating Henry's constants and thus limiting activity coefficients of nonelectrolytes in water.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.