The protein-based technologies used to screen newborns for sickle cell disease require confirmation with a liquid blood specimen. We have developed a strategy for rapid and specific genotypic diagnosis using DNA extracted from a dried blood spot on the filter paper blotter used to screen newborns. DNA could be microextracted from a specimen as small as a 1/8 inch diameter punched disc representing the dried equivalent of approximately 3 microliters of whole blood. We utilized the DNA from a 1/4 inch diameter specimen (12 microliters equivalent) for polymerase chain reaction amplification of the beta-globin region spanning the sickle cell mutation with detection by allele-specific oligonucleotide probes. Molecular confirmation of genotype from the original blotter would reduce the personnel costs associated with obtaining follow-up liquid blood specimens and would provide information to the family in a more timely and less equivocal manner.
Adherence of radiolabeled Streptococcus mutans and Streptococcus sanguis to saliva-treated glass surfaces was studied under conditions which minimized bacteria-glass interactions. Treatment of glass with an alkylsilane solution decreased nonspecific bacterial adherence and enhanced adsorption of radiolabeled salivary components to these surfaces. Addition of Triton X-100 to the bacterial suspensions also reduced nonspecific adherence to siliconized glass, but did not affect adherence to salivary components attached to siliconized glass. Calcium stimulated S. mutans adherence to saliva-free glass, but inhibited adherence to salivatreated glass. S. sanguis adherence to either saliva-free or saliva-treated glass was inhibited slightly at high calcium ion concentrations. Adherence of streptococci to saliva-treated glass exhibited saturation kinetics, and the numbers of binding sites on the experimental salivary pellicle and the affinity constants for bacteria-saliva attachment were determined. Preincubation of the streptococci with whole saliva decreased their capacity to adhere to saliva-treated glass, but not to saliva-free glass. Bacteria adherent to saliva-treated glass surfaces were readily desorbed by washing with saliva. The addition of homologous antisera, ammonium sulfate-precipitated immunoglobulins, or Fab fragments to the bacterial suspensions inhibited cell adherence to saliva-treated glass.
The membrane-bound adenosine triphosphatase (ATPase) activity of Acholeplasma laidlawii B differs in many respects from the common (Mg2+, Ca2+)-ATPase activity of higher bacteria, most notably in that it is specifically activated by Mg2+ and strongly and specifically stimulated by Na+ (or Li+). Various inhibitors diminish the ATPase activity with a concentration dependence which suggests that a single enzyme species is responsible for all of the observed ATP hydrolytic activity (both basal and Na+ stimulated). The Km for ATP is influenced by temperature but not by membrane lipid fatty acid composition. Vmax is influenced by both of these factors, showing a break in Arrhenius plots which falls below the lipid phase transition midpoint but well above the lower boundary when a phase transition occurs within the temperature range studied. The apparent energy of activation for Vma, is strongly influenced by lipid fatty acid composition both above and below the break. When whole cells of A. laidlawii B are incubated in KCI or NaCl buffers, they rapidly swell and lyse if deprived of an energy source or treated with ATPase inhibitors at concentrations which significantly inhibit enzyme activity in isolated membranes, whereas in sucrose or MgSO4 buffers of equal osmolarity, the cells are stable under these conditions. These results suggest that the membrane ATPase of A. laidlawii B is intimately associated with the membrane lipids and that it functions as a monovalent cation pump which regulates intracellular osmolarity as the (Na+, K+)-ATPase does in eucaryotes. 1027
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.