ContextTranslocation of wildlife has become common practice for wildlife managers charged with management of animals on increasingly modified landscapes. Mule deer (Odocoileus hemionus) is a species of great interest to the public in western North America, and individuals of this species have been translocated several times, but little has been done to document the outcomes of those translocations.
AimOur objective was to evaluate the movement, space use and site fidelity of translocated female mule deer in comparison with resident female deer in Utah, USA.
MethodsIn January and March 2013, 102 translocated and 50 resident female mule deer were captured and fitted with radio-transmitters. Movement distances, home range sizes and seasonal range sizes were compared, as well as site fidelity between translocated and resident deer.
Key resultsMean distance moved and mean annual home range size were significantly larger for translocated than resident deer in 2013, but not in 2014. Translocated deer demonstrated high site fidelity to their release areas. In total, 75% of surviving deer returned during the fall (September–November) migration to winter range within 7km of release sites.
ConclusionsOur results indicate that home range sizes and movements of translocated deer are larger than those of resident deer during the first year after release, but during the second year after release, home range sizes and movements of translocated deer are similar to those of resident deer.
ImplicationsThe similar home range sizes and movements of translocated and resident deer >1 year after release, as well as the high site fidelity we observed, suggests that translocation is a strategy managers could use to establish or augment populations of mule deer on winter range.
Translocation of large mammals has become common practice for wildlife managers charged with conservation of animals and their genetic integrity on increasingly modified landscapes. Translocations of ungulates have occurred around the world with varying outcomes. Although translocations have been used to manage mule deer (Odocoileus hemionus) in western North America, only recently have the outcomes associated with this management practice been documented. Our objective was to evaluate survival of translocated mule deer in comparison to resident mule deer over multiple years following release and provide information useful in judging the relative value of translocation as a conservation strategy for this species. In January and March 2013, the Utah Division of Wildlife Resources (UDWR) captured and translocated 102 mule deer from winter range near Parowan, Utah to winter range near Holden, Utah (approximately 145 kilometers north of capture location). We fitted each deer with a radio transmitter (n = 102 total: 21 GPS collars, 81 VHF collars) prior to release. We also captured and marked a total of 70 resident deer (9 GPS collars, 61 VHF collars) to serve as a reference group. Survival of translocated deer in the first year was similar among release dates in January (0.51; 95% CI = 0.40–0.63) and March (0.53; 95% CI = 0.40–0.66). Annual survival of translocated deer, however, was lower than survival of resident deer (0.83; 95% CI = 0.72–0.90) in the first year after release. During the second year following release, however, survival of translocated animals (0.85; 95% CI = 0.71–0.93) was not different from that of resident deer (0.80; 95% CI = 0.69–0.88). Additionally, age strongly influenced the survival of translocated deer; young deer (e.g., 1.5 year olds) were more than twice as likely as old deer (e.g., 7.5 year olds) to survive the initial year following translocation. These data highlight the need to monitor translocated animals for multiple years following release and suggest that wildlife managers should expect to see higher survival rates during the second year following translocation and higher survival rates in younger deer compared to older deer.
Existing eye safety standards are not suitable for specifying safety limits to which individuals are exposed on a daily basis. A possible approach to this problem is to relate safety limits to radiation doses found in nature. Although this method produces extremely conservative safety limits, it greatly reduces the possibility of temporary lesions encountered within existing guidelines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.