Our ever-increasing interest in economic growth is leading the way to the decline of natural resources, the detriment of air quality, and is fostering climate change. One potential solution to reduce carbon dioxide emissions from industrial emitters is the exploitation of carbon capture and storage (CCS). Among the various CO2 separation technologies, cryogenic carbon capture (CCC) could emerge by offering high CO2 recovery rates and purity levels. This review covers the different CCC methods that are being developed, their benefits, and the current challenges deterring their commercialisation. It also offers an appraisal for selected feasible small- and large-scale CCC applications, including blue hydrogen production and direct air capture. This work considers their technological readiness for CCC deployment and acknowledges competing technologies and ends by providing some insights into future directions related to the R&D for CCC systems.
Moving bed heat exchangers (MBHE)s are used in industrial applications including waste heat recovery and the drying of solids. As a result, energy balance models have been developed to simulate the heat transfer between a moving bed and the gas phase. Within these energy balance models, phase change of components within the gas phase has not been considered as the liquefaction or desublimation of the gas phase does not occur in typical industrial applications. However, available energy balance models for cryogenic CO2 capture (CCC) have only focused on fixed packed beds. The development of a suitable energy balance model to predict the energy duties for MBHEs that include phase change would be beneficial for CCC applications. This work investigated the development of moving bed energy balance models for the design of moving bed columns that involve phase change of CO2 into frost, using existing models for MBHEs and fixed-bed CCC capture. The models were evaluated by comparison with available moving bed experimental work and simulated data, predicted energy duty requirements and bed flow rates from the suggested moving bed CCC models to maintain thermal equilibrium. The comparisons showed a consistent prediction between the various methods and closely align with the available experimental and simulated data. Comparisons of energy duty and bed flow rate predictions from the developed energy balance models with simulated cases for an oil-fired boiler, combined cycle gas turbine (CCGT) and biogas upgrading showed energy duty requirements for the gas phase with a proximity of 0.1%, 20.8%, and 3.4%, respectively, and comparisons of gas energy duties from developed energy balance models with energy duties derived from experimental results were compared with a proximity of 1.1%, 1.1% and 0.6% to experimental results for CO2 % v/v concentrations of 18%, 8% and 4%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.