Polymerization processes are probably the most relevant example of a chemical reaction activated by catalysts or radical initiators. Among polymers, polyethylene is by far the most common and largely produced. Here we present a high-pressure synthesis of high-density crystalline polyethylene by using only physical tools such as pressure and light. Low-density polyethylene is obtained by compressing ethylene at room temperature above 3 GPa in the ordered crystal phase, and a highly crystalline polymer is produced in the fluid phase at pressures lower than 1 GPa by using continuous-wave laser lines (lambda < or = 460 nm) as an optical catalyst. The photo-activation is based on a two-photon absorption process to pi* antibonding states, where the change in molecular geometry favours the polymeric chain formation. The high yield and crystallinity of the polymer recovered by the photoinduced reaction and the simplicity of the synthesis make this process appealing for large-scale applications.
Serendipity and experiment have been a frequent approach for the development of materials and methodologies used for a long time for either cleaning or consolidation of works of art. Recently, new perspectives have been opened by the application of materials science, colloid science, and interface science frameworks to conservation, generating a breakthrough in the development of innovative tools for the conservation and preservation of cultural heritage. This Article is an overview of the most recent contributions of colloid and materials science to the art conservation field, mainly focusing on the use of amphiphile-based fluids, gels, and alkaline earth metal hydroxide nanoparticles dispersions for the cleaning of pictorial surfaces, the consolidation of artistic substrates, and the deacidification of paper, canvas, and wood. Future possible directions for solving several conservation issues that still need to be faced are also highlighted.
Conservation of our cultural heritage is fundamental for conveying to future generations our culture, traditions, and ways of thinking and behaving. Cleaning art, in particular modern/contemporary paintings, with traditional tools could be risky and impractical, particularly on large collections of important works to be transferred to future generations. We report on advanced cleaning systems, based on twin-chain polymer networks made of poly(vinyl alcohol) (PVA) chains, semiinterpenetrated (semi-IPN) with PVA of lower molecular weight (L-PVA). Interpenetrating L-PVA causes a change from gels with oriented channels to sponge-like semi-IPNs with disordered interconnected pores, conferring different gel (and solvent) dynamics. These features grant residue-free, time efficient cleaning capacity and effective dirt capture, defeating risks for the artifact, making possible a safer treatment of important collections, unconceivable with conventional methods. We report as an example the conservation of Jackson Pollock’s masterpieces, cleaned in a controlled way, safety and selectivity with unprecedented performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.