Background: Interdental rubber picks (IRP) have become a frequent and convenient alternative for interdental cleaning. However, only little evidence exists supporting the effectiveness of newer designs available on the market. Therefore, a new in vitro model was evaluated to measure the experimental cleaning efficacy (ECE), as well as the force needed for insertion and during the use of IRP, with high reproducibility. Methods: Five different sizes of commercially marketed IRP with elastomeric fingers (IRP-F) (GUM SOFT-PICKS® Advanced, Sunstar Deutschland GmbH, Schönau, Germany) or slats (IRP-S) (TePe EasyPick™, TePe D-A-CH GmbH, Hamburg, Germany) were tested. Interdental tooth surfaces were reproduced by a 3D-printer (Form 2, Formlabs Sommerville, MA, USA) according to human teeth and matched to morphologically equivalent pairs (isosceles triangle, concave, convex) fitting to different gap sizes (1.0 mm, 1.1 mm, 1.3 mm). The pre−/post brushing situations at interdental areas (standardized cleaning, computer aided ten cycles) were photographically recorded and quantified by digital image subtraction to calculate ECE [%]. Forces were registered with a load cell [N]. Results: IRP-F have to be inserted with significant higher forces of 3.2 ± 1.8 N compared to IRP-S (2.0 ± 1.6 N; p < 0.001) independent of the size and type of artificial interdental area. During cleaning process IRP-S showed significantly lower values for pushing/pulling (1.0 ± 0.8 N/0.5 ± 0.4 N) compared to IRP-F (1.6 ± 0.8 N/0.7 ± 0.3 N; p < 0.001) concomitant to significantly lower ECE (19.1 ± 9.8 vs. 21.7 ± 10.0%, p = 0.002). Highest ECE was measured with largest size of IRP-F/IRP-S independent the morphology of interdental area. Conclusions: New interdental cleaning aids can be tested by the new experimental setup supported by 3D printing technology. Within the limitations of an in vitro study, IRP-F cleaned more effectively at higher forces compared to IRP-S.
IntroductionThe aim of this study was to compare the shaping ability of four root canal preparation systems in newly developed 3D-printed root canal models.Materials and methodsFor this study, 1080 3D-printed acrylic resin blocks with nine different root canal configurations were produced. They were prepared with Reciproc R25 (#25), F6 SkyTaper (#25 and #30) F360 (#25 and #35) and One Shape (#25) (N = 30 per system). Pre- and post-instrumentation images were superimposed for evaluation of the centering ratio of the different systems. Ledges, instrument fractures and preparation times were also recorded. Analysis of variance (ANOVA) and post-hoc Tukey tests were conducted, comparing the mean canal centering ratios and the mean preparation times.ResultsThere were significant differences between all systems regarding the centering ratios in the different root canal configurations (ANOVA p < 0.001). The root canal configuration had considerable effect on the centering ratio of the instruments. The best overall mean centering ratios were achieved with F6 SkyTaper #25 instruments especially in canal configurations with big curvature angles and radii, while F360 #35 was least centered especially in canals with small curvature angles and radii. Most ledges occurred with OneShape, while it was the significantly (p < 0.001) fastest preparation system (86.7 s (SD 13.53)) and Reciproc the significantly (p < 0.001) slowest (103.0 s (SD 20.67)).Conclusion3D-printed root canals are suitable to produce challenging canal configurations and to investigate the limitations of root canal instruments. We found that all instruments caused canal transportations. However, F6 SkyTaper #25 files had better overall centering ratios than the other instruments. In canal configurations with small curvature radii, the centering ratio of some instruments is low and the probability for ledges is increased.
Background Interdental brushes (IDB) are according to the actual evidence the first choice for cleaning interdental areas (IDR). Their size should be chosen individually according to the IDR morphology. However, interdental rubber picks (IRP) are appreciated better by the patients and are hence becoming more and more popular but the evidence regarding their efficacy is still limited. The aim of this in vitro study was to measure the experimental cleaning efficacy (ECE) and force (ECF) during the use of interdental brushes versus newer wireless types with rubber filaments (IRP), both fitted and non-fitted for different IDR. Methods The medium size of a conical IRP (regular, ISO 2) with elastomeric fingers versus four sizes (ISO 1, 2, 3, 4) of cylindric IDB with nylon filaments (all Sunstar Suisse SA, Etoy, Switzerland) were tested. Interdental tooth surfaces were reproduced by a 3D-printer (Form 2, Formlabs Sommerville, MA, USA) according to human teeth and matched to morphologically equivalent pairs (isosceles triangle, concave, convex) fitting to three different gap sizes (1.0 mm, 1.1 mm, 1.3 mm). The pre-/post brushing situations at IDR (standardized, computer aided ten cycles) were photographically recorded and quantified by digital image subtraction to calculate ECE [%]. ECF were registered with a load cell [N]. Results Overall, a higher ECE was recorded for IDB compared to IRP (58.3 ± 14.9% versus 18.4 ± 10.1%; p < 0.001). ECE significantly depended on the fitting of the IDB. ECE was significant higher in isosceles triangle compared to concave and convex IDR for both IDB and IRP (p ≤ 0.001). ECF was lower for IDB (0.6 ± 0.4N) compared to IRP (0.8 ± 0.5N; p ≤ 0.001). ECE in relation to ECF increases with smaller IDB. For IRP highest values of ECF were found in the smallest IDR. Conclusions Within the limitations of an in vitro study, size fitted IDB cleaned more effectively at lower forces compared to conical IRP.
Reconstructions of facial bone defects are one of the most challenging aspects in surgical treatment of malignant diseases, large facial traumata, or congenital anomalies. High-level reconstruction techniques are often associated with an elevated morbidity by the harvest of autologous bone grafts from the patient. Tissue engineering techniques may help to solve this problem. The aim of this study was to monitor metabolic processes during cellular colonization of matrices in vivo in an established rat model for endocultivation. After implantation of computer-designed hydroxyapatite scaffolds into the latissimus dorsi muscle of six rats, 100 μg bone morphogenetic protein-2 (BMP-2) was injected twice, in week 1 and 2, directly into the center of the matrices. The development of pH value and oxygen (O₂) saturation inside the matrix was followed by fiber optic detection technique over 8 weeks and analyzed by variance analyses. Bone density measurements were performed by computed tomography as well as histological evaluations. Two weeks after implantation, oxygen supply and pH value measurements had decreased significantly. In the following weeks both parameters increased and stabilized on higher levels. This is the first study reporting a reproducible method to follow metabolic processes during heterotopic osteoinduction in vivo. It was shown that in the beginning of the study pH value and O₂ saturation decreased and it took several weeks to regain physiological levels. This is an important step to further understand the physiological process of bone induction.
Background The aim of the current study was to comparatively assess the efficiency of three different adjunctive therapy options (cold atmospheric plasma, [CAP], photodynamic therapy [PDT] and chemical decontamination via 35% phosphoric acid gel [PAG]) on decontamination of titanium implant surfaces in-vitro. Materials and methods Implants were inserted in concavities of four mm in depth mimicking a bone defect at the implant recipient site. In each model, two implants were inserted in the fourth and one implant in the third quadrants. After contamination with E. faecalis, the first group has been treated with CAP for 3 min, the second group with 35% PAG (and the third group with PDT. After treatment, quantification of bacterial colonization was assessed by quantification via colony forming units and qualitatively by fluorescence microscopy and scanning electron microscopy. Results With a mean value of 1.24 × 105 CFU/ml, the CAP treated implants have showed the least microorganisms. The highest number of CFU was found after PDT with mean value of 8.28 × 106 CFU/ml. For the implants that were processed with phosphoric acid, a mean value of 3.14 × 106 CFU/ml could be detected. When the groups were compared, only the CAP and PDT groups differed significantly from each other (p = 0.005). Conclusion A complete cleaning of the micro-textured implant surface or the killing of the bacteria could not be achieved by any of the investigated treatment options, thus bacteria in the microstructure of the titanium surface cannot be completely reached by mechanical and physico-chemical processes. Clinical relevance The main goal of the adjunctive peri-implantitis treatment is the decontamination of the implant surface. However, there is still an ongoing need to define the most appropriate adjunctive therapy method. Due to its antimicrobial effects, CAP combined with mechanical debridement could be a feasible treatment modality in the management of peri-implantitis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.