Hydroarylation reactions of olefins are catalyzed by the octahedral Ru(II) complex TpRu-(CO)(NCMe)(Ph) (1) (Tp ) hydridotris(pyrazolyl)borate). Experimental studies and density functional theory calculations support a reaction pathway that involves initial acetonitrile/ olefin ligand exchange and subsequent olefin insertion into the ruthenium-phenyl bond. Metal-mediated C-H activation of arene to form a Ru-aryl bond with release of alkyl arene completes the proposed catalytic cycle. The cyclopentadienyl complex CpRu(PPh 3 ) 2 (Ph) produces ethylbenzene and styrene from a benzene/ethylene solution at 90 °C; however, the transformation is not catalytic. A benzene solution of (PCP)Ru(CO)(Ph) (PCP ) 2,6-(CH 2 P t -Bu 2 ) 2 C 6 H 3 ) and ethylene at 90 °C produces styrene in 12% yield without observation of ethylbenzene. Computational studies (DFT) suggest that the C-H activation step does not proceed through the formation of a Ru(IV) oxidative addition intermediate but rather occurs by a concerted pathway.
Bu 2 ) 2 C 6 H 3 ) has been prepared by two independent routes that involve deprotonation of Ru-(II) ammine complexes. Complex 2 reacts with phenylacetylene to yield the Ru(II) acetylide complex (PCP)Ru(CO)(CtCPh) (5) and ammonia. In addition, complex 2 rapidly activates dihydrogen at room temperature to yield ammonia and the previously reported hydride complex (PCP)Ru(CO)(H). The ability of the amido complex 2 to cleave the H-H bond is attributed to the combination of a vacant coordination site for binding/activation of dihydrogen and a basic amido ligand. Complex 2 also undergoes an intramolecular C-H activation of a methyl group on the PCP ligand to yield ammonia and a cyclometalated complex. The reaction of (PCP)Ru(CO)(Cl) with MeLi allows the isolation of (PCP)Ru(CO)-(Me) (8), and complex 8 undergoes an intramolecular C-H activation analogous to the amido complex 2 to produce methane and the cyclometalated complex. Determination of activation parameters for the intramolecular C-H activation transformations of 2 and 8 reveal identical ∆H q {18(1) kcal/mol} with ∆S q ) -23(4) eu and -18(4) eu, respectively. Density functional theory has been applied to the study of intermolecular activation of methane and dihydrogen by (PCP′)Ru(CO)(NH 2 ) to yield (PCP′)Ru(CO)(NH 3 )(X) (X ) Me or H; PCP′ ) 2,6-(CH 2 -PH 2 ) 2 C 6 H 3 ). The results indicate that the activation of dihydrogen is both exoergic and exothermic. In contrast, the addition of a C-H bond of methane across the Ru-NH 2 bond has been calculated to be endoergic and endothermic. The surprising endoergic nature of the methane C-H activation has been attributed to a large and unfavorable change in Ru-N bond dissociation energy upon conversion from Ru-amido to Ru-ammine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.