Hydroarylation reactions of olefins are catalyzed by the octahedral Ru(II) complex TpRu-(CO)(NCMe)(Ph) (1) (Tp ) hydridotris(pyrazolyl)borate). Experimental studies and density functional theory calculations support a reaction pathway that involves initial acetonitrile/ olefin ligand exchange and subsequent olefin insertion into the ruthenium-phenyl bond. Metal-mediated C-H activation of arene to form a Ru-aryl bond with release of alkyl arene completes the proposed catalytic cycle. The cyclopentadienyl complex CpRu(PPh 3 ) 2 (Ph) produces ethylbenzene and styrene from a benzene/ethylene solution at 90 °C; however, the transformation is not catalytic. A benzene solution of (PCP)Ru(CO)(Ph) (PCP ) 2,6-(CH 2 P t -Bu 2 ) 2 C 6 H 3 ) and ethylene at 90 °C produces styrene in 12% yield without observation of ethylbenzene. Computational studies (DFT) suggest that the C-H activation step does not proceed through the formation of a Ru(IV) oxidative addition intermediate but rather occurs by a concerted pathway.
TpRuII(CO)(Me)(NCMe) (Tp = hydridotris(pyrazolyl)borate) serves as a catalyst precursor for the conversion of benzene and ethylene or propene to alkylaromatic products. The reaction proceeds via the formation of the active catalyst TpRu(CO)(Ph)(NCMe) and is mildly selective for linear propylbenzene over isopropylbenzene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.