The search for active catalysts that efficiently oxidize methane under ambient conditions remains a challenging task for both C1 utilization and atmospheric cleansing. Here, we show that when the particle size of zinc oxide is reduced down to the nanoscale, it exhibits high activity for methane oxidation under simulated sunlight illumination, and nano silver decoration further enhances the photo-activity via the surface plasmon resonance. The high quantum yield of 8% at wavelengths o400 nm and over 0.1% at wavelengths B470 nm achieved on the silver decorated zinc oxide nanostructures shows great promise for atmospheric methane oxidation. Moreover, the nano-particulate composites can efficiently photo-oxidize other small molecular hydrocarbons such as ethane, propane and ethylene, and in particular, can dehydrogenize methane to generate ethane, ethylene and so on. On the basis of the experimental results, a two-step photocatalytic reaction process is suggested to account for the methane photo-oxidation.
The development of low-cost and long-lasting all-climate cathode materials for the sodium ion battery has been one of the key issues for the success of large-scale energy storage. One option is the utilization of earth-abundant elements such as iron. Here, we synthesize a NASICON-type tuneable Na
4
Fe
3
(PO
4
)
2
(P
2
O
7
)/C nanocomposite which shows both excellent rate performance and outstanding cycling stability over more than 4400 cycles. Its air stability and all-climate properties are investigated, and its potential as the sodium host in full cells has been studied. A remarkably low volume change of 4.0% is observed. Its high sodium diffusion coefficient has been measured and analysed via first-principles calculations, and its three-dimensional sodium ion diffusion pathways are identified. Our results indicate that this low-cost and environmentally friendly Na
4
Fe
3
(PO
4
)
2
(P
2
O
7
)/C nanocomposite could be a competitive candidate material for sodium ion batteries.
A thermoelectric material consisting of Cu 2 Se incorporated with up to 0.45 wt% of graphene nanoplates is reported. The carbon-reinforced Cu 2 Se exhibits an ultra-high thermoelectric figure-of-merit of zT = 2.44 ± 0.25 at 870 K. Microstructural characterization reveals dense, nanostructured grains of Cu 2 Se with multilayer-graphene and graphite agglomerations located at grain boundaries. High temperature X-ray diffraction shows that the graphene incorporated Cu 2 Se matrix retains a cubic structure and the composite microstructure is chemically stable. Based on the experimental structure, density functional theory was used to calculate the formation energy of carbon point defects and the associated phonon density of states. The isolated carbon inclusion is shown to have a high formation energy in Cu 2 Se whereas graphene and graphite phases are enthalpically stable relative to the solid solution. Neutron 2 spectroscopy proves that there is a frequency mismatch in the phonon density of states between the carbon honeycomb phases and cubic Cu 2 Se. This provides a mechanism for the strong scattering of phonons at the composite interfaces, which significantly impedes the conduction of heat and enhances thermoelectric performance.
The recent discovery of 2D magnetic order in van der Waals materials has stimulated a renaissance in the field of atomically thin magnets. This has led to promising demonstrations of spintronic functionality such as tunneling magnetoresistance. The frantic pace of this emerging research, however, has also led to some confusion surrounding the underlying phenomena of phase transitions in 2D magnets. In fact, there is a rich history of experimental precedents beginning in the 1960s with quasi-2D bulk magnets and progressing to the 1980s using atomically thin sheets of elemental metals. This review provides a holistic discussion of the current state of knowledge on the three distinct families of low-dimensional magnets: quasi-2D, ultrathin films, and van der Waals crystals. It highlights the unique opportunities presented by the latest implementation in van der Waals materials. By revisiting the fundamental insights from the field of low-dimensional magnetism, this review highlights factors that can be used to enhance material performance. For example, the limits imposed on the critical temperature by the Mermin-Wagner theorem can be escaped in three separate ways: magnetocrystalline anisotropy, long-range interactions, and shape anisotropy. Several recent experimental reports of atomically thin magnets with Curie temperatures above room temperature are highlighted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.