Calculation of evaporation requires accurate thermophysical properties of the liquid. Such data are well-known for conventional fossil fuels. In contrast, e.g., thermal conductivity or dynamic viscosity of the fuel vapor are rarely available for modern liquid fuels. To overcome this problem, molecular models can be used. Currently, the measurement-based properties of n-heptane and diesel oil are compared with estimated values, using the state-of-the-art molecular models to derive the temperature-dependent material properties. Then their effect on droplet evaporation was evaluated. The critical parameters were liquid density, latent heat of vaporization, boiling temperature, and vapor thermal conductivity where the estimation affected the evaporation time notably. Besides a general sensitivity analysis, evaporation modeling in a practical burner ended up with similar results. By calculating droplet motion, the evaporation number, the evaporation-to-residence time ratio can be derived. An empirical cumulative distribution function is used for the spray of the analyzed burner to evaluate evaporation in the mixing tube. Evaporation number did not exceed 0.4, meaning a full evaporation prior to reaching the burner lip in all cases. As droplet inertia depends upon its size, the residence time has a minimum value due to the phenomenon of overshooting.
Modeling of heat and mass transfer in liquid fuel combustion requires several material properties in a wide temperature and pressure range. The unavailable data are commonly patched with various estimation methods. In this paper, group contribution methods (GCM) and law of corresponding states (LCS) were analyzed for estimating material properties of n-alkanes (up to C10H22 and C12H26), 1-alcohols (up to C10H22O), and methyl esters (up to C19H38O2 and C19H36O2). These were compared to reference data to evaluate their applicability. LCS suggested by Poling et al. provides proper estimation for the acentric factor. GCM of Joback accurately estimates normal boiling point, critical properties, and specific heat capacity of the vapor-phase, the latter was corrected for methanol, however, GCM of Constantinou is more accurate for critical pressure of methyl esters. GCM of Ruzicka is suitable for estimating liquid-phase specific heat capacity. This method was updated for methanol. GCM of Elbro gives a proper estimation for liquid-phase density, while LCS of Lucas estimates vapor-phase viscosity properly. LCS of Chung and the modified Eucken method for vapor-phase and GCM of Sastri for liquid-phase thermal conductivity are appropriate. Considering the gas-phase mutual diffusion coefficient, the method of Fuller provides the best estimation, while LCS methods of Riedel and Chen are suitable for the enthalpy of vaporization at the normal boiling point.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.