We carry out a numerical study of the spinless modular bootstrap for conformal field theories with current algebra U(1)c× U(1)c, or equivalently the linear programming bound for sphere packing in 2c dimensions. We give a more detailed picture of the behavior for finite c than was previously available, and we extrapolate as c → ∞. Our extrapolation indicates an exponential improvement for sphere packing density bounds in high dimen- sions. Furthermore, we study when these bounds can be tight. Besides the known cases c = 1/2, 4, and 12 and the conjectured case c = 1, our calculations numerically rule out sharp bounds for all other c < 90, by combining the modular bootstrap with linear programming bounds for spherical codes.
Packing problems in discrete geometry can be modeled as finding independent sets in infinite graphs where one is interested in independent sets which are as large as possible. For finite graphs one popular way to compute upper bounds for the maximal size of an independent set is to use Lasserre's semidefinite programming hierarchy. We generalize this approach to infinite graphs. For this we introduce topological packing graphs as an abstraction for infinite graphs coming from packing problems in discrete geometry. We show that our hierarchy converges to the independence number.
We give theorems that can be used to upper bound the densities of packings of
different spherical caps in the unit sphere and of translates of different
convex bodies in Euclidean space. These theorems extend the linear programming
bounds for packings of spherical caps and of convex bodies through the use of
semidefinite programming. We perform explicit computations, obtaining new
bounds for packings of spherical caps of two different sizes and for binary
sphere packings. We also slightly improve bounds for the classical problem of
packing identical spheres.Comment: 31 page
We use techniques from (tracial noncommutative) polynomial optimization to formulate hierarchies of semidefinite programming lower bounds on matrix factorization ranks. In particular, we consider the nonnegative rank, the positive semidefinite rank, and their symmetric analogues: the completely positive rank and the completely positive semidefinite rank. We study convergence properties of our hierarchies, compare them extensively to known lower bounds, and provide some (numerical) examples.Keywords Matrix factorization ranks · Nonnegative rank · Positive semidefinite rank · Completely positive rank · Completely positive semidefinite rank · Noncommutative polynomial optimization Mathematics Subject Classification (2010) 15A48 · 15A23 · 90C22 1 Introduction
Matrix factorization ranksA factorization of a matrix A ∈ R m×n over a sequence {K d } d∈N of cones that are each equipped with an inner product ·, · is a decomposition of the form A = ( X i ,Y j ) with X i ,Y j ∈ K d for all (i, j) ∈ [m] × [n], for some integer d ∈ N. Following [35], the
Abstract. A real symmetric matrix M is completely positive semidefinite if it admits a Gram representation by (Hermitian) positive semidefinite matrices of any size d. The smallest such d is called the (complex) completely positive semidefinite rank of M , and it is an open question whether there exists an upper bound on this number as a function of the matrix size. We construct completely positive semidefinite matrices of size 4k 2 +2k+2 with complex completely positive semidefinite rank 2 k for any positive integer k. This shows that if such an upper bound exists, it has to be at least exponential in the matrix size. For this we exploit connections to quantum information theory and we construct extremal bipartite correlation matrices of large rank. We also exhibit a class of completely positive matrices with quadratic (in terms of the matrix size) completely positive rank, but with linear completely positive semidefinite rank, and we make a connection to the existence of Hadamard matrices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.