Quantum gravity in the region very near the horizon of an extreme Kerr black hole (whose angular momentum and mass are related by J = GM 2 ) is considered. It is shown that consistent boundary conditions exist, for which the asymptotic symmetry generators form one copy of the Virasoro algebra with central charge c L = 12J . This implies that the near-horizon quantum states can be identified with those of (a chiral half of) a two-dimensional conformal field theory (CFT). Moreover, in the extreme limit, the Frolov-Thorne vacuum state reduces to a thermal density matrix with dimensionless temperature T L = 1 2π and conjugate energy given by the zero mode generator, L 0 , of the Virasoro algebra. Assuming unitarity, the Cardy formula then gives a microscopic entropy S micro = 2πJ for the CFT, which reproduces the macroscopic Bekenstein-Hawking entropy S macro = Area 4 G . The results apply to any consistent unitary quantum theory of gravity with a Kerr solution. We accordingly conjecture that extreme Kerr black holes are holographically dual to a chiral two-dimensional conformal field theory with central charge c L = 12J , and in particular that the near-extreme black hole GRS 1915+105 is approximately dual to a CFT with c L ∼ 2 × 10 79 . ‡On leave from the Institute
The information paradox can be realized in anti-de Sitter spacetime joined to a Minkowski region. In this setting, we show that the large discrepancy between the von Neumann entropy as calculated by Hawking and the requirements of unitarity is fixed by including new saddles in the gravitational path integral. These saddles arise in the replica method as complexified wormholes connecting different copies of the black hole. As the replica number n → 1, the presence of these wormholes leads to the island rule for the computation of the fine-grained gravitational entropy. We discuss these replica wormholes explicitly in two-dimensional Jackiw-Teitelboim gravity coupled to matter.
We compute the time-dependent entanglement entropy of a CFT which starts in relatively simple initial states. The initial states are the thermofield double for thermal states, dual to eternal black holes, and a particular pure state, dual to a black hole formed by gravitational collapse. The entanglement entropy grows linearly in time. This linear growth is directly related to the growth of the black hole interior measured along "nice" spatial slices. These nice slices probe the spacelike direction in the interior, at a fixed special value of the interior time. In the case of a two-dimensional CFT, we match the bulk and boundary computations of the entanglement entropy. We briefly discuss the long time behavior of various correlators, computed via classical geodesics or surfaces, and point out that their exponential decay comes about for similar reasons. We also present the time evolution of the wavefunction in the tensor network description.
Entanglement entropy obeys a 'first law', an exact quantum generalization of the ordinary first law of thermodynamics. In any CFT with a semiclassical holographic dual, this first law has an interpretation in the dual gravitational theory as a constraint on the spacetimes dual to CFT states. For small perturbations around the CFT vacuum state, we show that the set of such constraints for all ball-shaped spatial regions in the CFT is exactly equivalent to the requirement that the dual geometry satisfy the gravitational equations of motion, linearized about pure AdS. For theories with entanglement entropy computed by the Ryu-Takayanagi formula S = A/(4G N ), we obtain the linearized Einstein equations. For theories in which the vacuum entanglement entropy for a ball is computed by more general Wald functionals, we obtain the linearized equations for the associated higher-curvature theories. Using the first law, we also derive the holographic dictionary for the stress tensor, given the holographic formula for entanglement entropy. This method provides a simple alternative to holographic renormalization for computing the stress tensor expectation value in arbitrary higher derivative gravitational theories.
Two-dimensional conformal field theories exhibit a universal free energy in the high temperature limit T → ∞, and a universal spectrum in the Cardy regime, ∆ → ∞. We show that a much stronger form of universality holds in theories with a large central charge c and a sparse light spectrum. In these theories, the free energy is universal at all values of the temperature, and the microscopic spectrum matches the Cardy entropy for all ∆ ≥ c 6 . The same is true of three-dimensional quantum gravity; therefore our results provide simple necessary and sufficient criteria for 2d CFTs to behave holographically in terms of the leading spectrum and thermodynamics. We also discuss several applications to CFT and gravity, including operator dimension bounds derived from the modular bootstrap, universality in symmetric orbifolds, and the role of non-universal 'enigma' saddlepoints in the thermodynamics of 3d gravity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.