Computational Fluid Dynamics (CFD) solutions have played an important role in the design and evaluation of complex problems where analytical solutions are not available. Among many practical applications, hypersonic flows have been an area of intense research because of the important challenges found in this flow regime. The numerical study conducted herein, focuses on solving the hypersonic flat plate problem under realistic conditions, at high Reynolds and Mach numbers. The numerical scheme implemented in this study solves the two-dimensional unsteady Navier Stokes Equations, using a novel technique called Integro-Differential Scheme (IDS) that combines the traditional finite volume and the finite difference methods. Moreover, this scheme is built on the premise of reducing the numerical errors through the implementation of a consistent averaging procedure. Unlike other numerical approaches, where free molecular effects are considered, this study enforces no-slip and fixed temperature as boundary conditions. The IDS approach accurately predicted the physics in the vicinity of the hypersonic leading edge at such realistic conditions. Even though there are slight discrepancies between the numerical solution and the available experimental data, the IDS solution revealed some interesting details about the flow field that was previously undiscovered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.