In this work we describe a Convolutional Neural Network (CNN) to accurately predict image quality without a reference image. Taking image patches as input, the CNN works in the spatial domain without using hand-crafted features that are employed by most previous methods. The network consists of one convolutional layer with max and min pooling, two fully connected layers and an output node. Within the network structure, feature learning and regression are integrated into one optimization process, which leads to a more effective model for estimating image quality. This approach achieves state of the art performance on the LIVE dataset and shows excellent generalization ability in cross dataset experiments. Further experiments on images with local distortions demonstrate the local quality estimation ability of our CNN, which is rarely reported in previous literature.
This paper analyzes, compares, and contrasts technical challenges, methods, and the performance of text detection and recognition research in color imagery. It summarizes the fundamental problems and enumerates factors that should be considered when addressing these problems. Existing techniques are categorized as either stepwise or integrated and sub-problems are highlighted including text localization, verification, segmentation and recognition. Special issues associated with the enhancement of degraded text and the processing of video text, multi-oriented, perspectively distorted and multilingual text are also addressed. The categories and sub-categories of text are illustrated, benchmark datasets are enumerated, and the performance of the most representative approaches is compared. This review provides a fundamental comparison and analysis of the remaining problems in the field.
Structured pruning of filters or neurons has received increased focus for compressing convolutional neural networks. Most existing methods rely on multi-stage optimizations in a layer-wise manner for iteratively pruning and retraining which may not be optimal and may be computation intensive. Besides, these methods are designed for pruning a specific structure, such as filter or block structures without jointly pruning heterogeneous structures. In this paper, we propose an effective structured pruning approach that jointly prunes filters as well as other structures in an endto-end manner. To accomplish this, we first introduce a soft mask to scale the output of these structures by defining a new objective function with sparsity regularization to align the output of baseline and network with this mask. We then effectively solve the optimization problem by generative adversarial learning (GAL), which learns a sparse soft mask in a label-free and an end-to-end manner. By forcing more scaling factors in the soft mask to zero, the fast iterative shrinkage-thresholding algorithm (FISTA) can be leveraged to fast and reliably remove the corresponding structures. Extensive experiments demonstrate the effectiveness of GAL on different datasets, including MNIST, CIFAR-10 and Im-ageNet ILSVRC 2012. For example, on ImageNet ILSVRC 2012, the pruned ResNet-50 achieves 10.88% Top-5 error and results in a factor of 3.7× speedup. This significantly outperforms state-of-the-art methods.
Blind image quality assessment (BIQA) research aims to develop a perceptual model to evaluate the quality of distorted images automatically and accurately without access to the non-distorted reference images. The state-of-the-art general purpose BIQA methods can be classified into two categories according to the types of features used. The first includes handcrafted features which rely on the statistical regularities of natural images. These, however, are not suitable for images containing text and artificial graphics. The second includes learning-based features which invariably require large codebook or supervised codebook updating procedures to obtain satisfactory performance. These are time-consuming and not applicable in practice. In this paper, we propose a novel general purpose BIQA method based on high order statistics aggregation (HOSA), requiring only a small codebook. HOSA consists of three steps. First, local normalized image patches are extracted as local features through a regular grid, and a codebook containing 100 codewords is constructed by K-means clustering. In addition to the mean of each cluster, the diagonal covariance and coskewness (i.e., dimension-wise variance and skewness) of clusters are also calculated. Second, each local feature is softly assigned to several nearest clusters and the differences of high order statistics (mean, variance and skewness) between local features and corresponding clusters are softly aggregated to build the global quality aware image representation. Finally, support vector regression is adopted to learn the mapping between perceptual features and subjective opinion scores. The proposed method has been extensively evaluated on ten image databases with both simulated and realistic image distortions, and shows highly competitive performance to the state-of-the-art BIQA methods.
Crowd counting has recently attracted increasing interest in computer vision but remains a challenging problem. In this paper, we propose a trellis encoder-decoder network (TEDnet) for crowd counting, which focuses on generating high-quality density estimation maps. The major contributions are four-fold. First, we develop a new trellis architecture that incorporates multiple decoding paths to hierarchically aggregate features at different encoding stages, which improves the representative capability of convolutional features for large variations in objects. Second, we employ dense skip connections interleaved across paths to facilitate sufficient multi-scale feature fusions, which also helps TEDnet to absorb the supervision information. Third, we propose a new combinatorial loss to enforce similarities in local coherence and spatial correlation between maps. By distributedly imposing this combinatorial loss on intermediate outputs, TEDnet can improve the back-propagation process and alleviate the gradient vanishing problem. Finally, on four widely-used benchmarks, our TEDnet achieves the best overall performance in terms of both density map quality and counting accuracy, with an improvement up to 14% in MAE metric. These results validate the effectiveness of TEDnet for crowd counting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.