This review quantitatively examines a number of published studies that evaluated survival and inactivation of public-health-related microorganisms in groundwater. Information from reviewed literature is used to express microbial inactivation in terms of log10 decline per day for comparison to other studies and organisms. The geometric mean value for inactivation rates for coliphage, poliovirus, echovirus, coliform bacteria, enterococci, and Salmonella spp. were similar at approximately 0.07−0.1 log10 day-1, while geometric mean inactivation rates for hepatitis A virus, coxsackievirus, and phage PRD-1 were somewhat less at 0.02−0.04 log10 day-1. Viruses show a temperature dependency with greater inactivation at greater temperatures; however this occurs largely at temperatures greater than 20 °C. Coliform bacteria dieoff in groundwater does not show the temperature dependency that viruses show, likely indicating a complex interplay of inactivation and reproduction subject to influences from native groundwater organisms, temperature, and water chemistry. The presence of native microorganisms seems to negatively impact E. coli survival more so than viruses, but in most cases, nonsterile conditions led to a greater inactivation for viruses also. The effect of attachment to solid surfaces appears to be virus-type-dependent, with PRD-1 more rapidly inactivated as a result of attachment and hepatitis A and poliovirus survival prolonged when attached.
Human enteropathogenic microsporidia (HEM), Cryptosporidium parvum, Cyclospora cayetanesis, and Giardia lamblia are associated with gastrointestinal disease in humans. To date, the mode of transmission and environmental occurrence of HEM (Encephalitozoon intestinalis and Enterocytozoon bieneusi) and Cyclospora cayetanesis have not been fully elucidated due to lack of sensitive and specific environmental screening methods. The present study was undertaken with recently developed methods, to screen various water sources used for public consumption in rural areas around the city of Guatemala. Water concentrates collected in these areas were subjected to community DNA extraction followed by PCR amplification, PCR sequencing and computer database homology comparison (CDHC). All water samples screened in this study had been previously confirmed positive for Giardia spp. by immunofluorescent assay (IFA). Of the 12 water concentrates screened, 6 showed amplification of microsporidial SSU-rDNA and were subsequently confirmed to be Encephalitozoon intestinalis. Five of the samples allowed for amplification of Cyclospora 18S-rDNA; three of these were confirmed to be Cyclospora cayetanesis while two could not be identified because of inadequate sequence information. Thus, this study represents the first confirmed identification of Cyclospora cayetanesis and Encephalitozoon intestinalis in source water used for consumption. The fact that the waters tested may be used for human consumption indicates that these emerging protozoa may be transmitted by ingestion of contaminated water.
The gene for the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (rbcL) has been shown to be a useful target for molecular assays that quantify form- or clade-specific RNA transcript concentrations as a proxy for the carbon fixation activity of marine phytoplankton. To improve the phylogenetic specificity and sensitivity of RNA probe hybridization methods, a quantitative reverse transcription-polymerase chain reaction (RT-PCR) assay has been reported for diatom and pelagophyte rbcL RNA. Here we detail enhancements made to this PCR method and development of additional assays to specifically quantify rbcL expression from haptophytes, Synechococcus and high-light Prochlorococcus. In vitro RNA transcripts were tested to demonstrate specificity and quantitative accuracy. Application of these methods on seawater samples from two depth profiles in the northern Gulf of Mexico showed a fair degree of agreement between PCR and hybridization results, with results for the chromophytic or form ID rbcL-containing organisms having better agreement between the two methods. Diatoms and other heterokonts were shown to be the primary carbon fixers at these locations by PCR, in agreement with greater form ID rbcL RNA measured by hybridization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.