This paper presents a study on the effects of thermal autofrettage on the residual stresses in a Titanium – Copper brazed joint. It is shown that cryogenic thermal autofrettage has the potential to alter the residual stress field due to joining, in a manner that should result in an improvement in the subsequent operational fatigue performance of dissimilar material joints. Beneficial change in the residual stress field in the less-ductile component of the joint is apparent and desirable constitutive characteristics of the braze material to enhance the final residual stress field are also highlighted. Results from the finite element simulations are validated using experimental residual stress measurements produced using X-ray Diffraction. The characteristics of the process and the findings of the work presented should also be relevant to dissimilar material joints manufactured by other processes
In the developing DEMO divertor, the design of joints between tungsten to other fusion related materials is a significant challenge as a result of the dissimilar physical metallurgy of the materials to be joined. This paper focuses on the design and fabrication of dissimilar brazed joints between tungsten and fusion relevant materials such as EUROFER 97, oxygen-free high thermal conductivity (OFHC) Cu and SS316L using a gold based brazing foil. The main objectives are to develop acceptable brazing procedures for dissimilar joining of tungsten to other fusion compliant materials and to advance the metallurgical understanding within the interfacial region of the brazed joint. Four different butt-type brazed joints were created and characterised, each of which were joined with the aid of a thin brazing foil (Au80Cu19Fe1, in wt.%). Microstructural characterisation and elemental mapping in the transition region of the joint was undertaken and, thereafter, the results were analysed as was the interfacial diffusion characteristics of each material combination produced. Nano-indentation tests are performed at the joint regions and correlated with element composition information in order to understand the effects of diffused elements on mechanical properties. The experimental procedures of specimen fabrication and material characterisation methods are presented. The results of elemental transitions after brazing are reported. Elastic modulus and nano-hardness of each brazed joints are reported
This version is available at https://strathprints.strath.ac.uk/53935/ Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.ukThe Strathprints institutional repository (https://strathprints.strath.ac.uk) is a digital archive of University of Strathclyde research outputs. It has been developed to disseminate open access research outputs, expose data about those outputs, and enable the management and persistent access to Strathclyde's intellectual output. Current proposals for the divertor component of a thermonuclear fusion reactor include tungsten and copper as potentially suitable materials. This paper presents the procedures developed for the successful brazing of tungsten to oxygen free high conductivity (OFHC) copper using a fusion appropriate gold based brazing alloy, Orobraze 890 (Au80Cu20). The objectives were to develop preparation techniques and brazing procedures in order to produce a repeatable, defect free butt joint for tungsten to copper. Multiple brazing methods were utilised and brazing parameters altered to achieve the best joint possible. Successful and unsuccessful brazed specimens were sectioned and analysed using optical and scanning electron microscopy, EDX analysis and ultrasonic evaluation. It has been determined that brazing with Au80Cu20 has the potential to be a suitable joining method for a tungsten to copper joint. Brazing Development and Interfacial Metallurgy Study of Tungsten and Copper Joints with Eutectic Gold Copper Brazing Alloy
This version is available at https://strathprints.strath.ac.uk/58219/ Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.ukThe Strathprints institutional repository (https://strathprints.strath.ac.uk) is a digital archive of University of Strathclyde research outputs. It has been developed to disseminate open access research outputs, expose data about those outputs, and enable the management and persistent access to Strathclyde's intellectual output. Abstract-Understanding the residual stress state in brazed joints is crucial for operational design and life time performance of the part in service. High magnitude residual stresses are expected in the joined materials following cooling from brazing temperatures (≈950C) due to large mismatches in material properties such as coefficient of thermal expansion and Young's modulus (E). This paper aims to further understanding of the residual stresses caused when brazing tungsten to copper using a eutectic gold-copper brazing alloy. This configuration is potentially useful for future divertor designs. Finite Element Analysis (FEA) has been used to predict the brazing induced stresses and residual stress measurements were carried out on the brazed joint by X-ray diffraction (XRD) to validate the prediction model. Large residual stresses are predicted and measured in the tungsten; however there is disagreement in the nature of the stress. Predicted stresses are highly tensile in nature close to the brazing interface, whereas the measured stresses are highly compressive. The disagreement is believed to be caused by the model not accurately simulating the complex brazing process. Residual stress measurements on the copper were not possible due to texturing during brazing, grain growth and significant inelastic strains. Misalignment of parent materials was also observed to significantly affect residual stresses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.