Objective COVID-19 poses societal challenges that require expeditious data and knowledge sharing. Though organizational clinical data are abundant, these are largely inaccessible to outside researchers. Statistical, machine learning, and causal analyses are most successful with large-scale data beyond what is available in any given organization. Here, we introduce the National COVID Cohort Collaborative (N3C), an open science community focused on analyzing patient-level data from many centers. Methods The Clinical and Translational Science Award (CTSA) Program and scientific community created N3C to overcome technical, regulatory, policy, and governance barriers to sharing and harmonizing individual-level clinical data. We developed solutions to extract, aggregate, and harmonize data across organizations and data models, and created a secure data enclave to enable efficient, transparent, and reproducible collaborative analytics. Organized in inclusive workstreams, in two months we created: legal agreements and governance for organizations and researchers; data extraction scripts to identify and ingest positive, negative, and possible COVID-19 cases; a data quality assurance and harmonization pipeline to create a single harmonized dataset; population of the secure data enclave with data, machine learning, and statistical analytics tools; dissemination mechanisms; and a synthetic data pilot to democratize data access. Discussion The N3C has demonstrated that a multi-site collaborative learning health network can overcome barriers to rapidly build a scalable infrastructure incorporating multi-organizational clinical data for COVID-19 analytics. We expect this effort to save lives by enabling rapid collaboration among clinicians, researchers, and data scientists to identify treatments and specialized care and thereby reduce the immediate and long-term impacts of COVID-19. LAY SUMMARY COVID-19 poses societal challenges that require expeditious data and knowledge sharing. Though medical records are abundant, they are largely inaccessible to outside researchers. Statistical, machine learning, and causal research are most successful with large datasets beyond what is available in any given organization. Here, we introduce the National COVID Cohort Collaborative (N3C), an open science community focused on analyzing patient-level data from many clinical centers to reveal patterns in COVID-19 patients. To create N3C, the community had to overcome technical, regulatory, policy, and governance barriers to sharing patient-level clinical data. In less than 2 months, we developed solutions to acquire and harmonize data across organizations and created a secure data environment to enable transparent and reproducible collaborative research. We expect the N3C to help save lives by enabling collaboration among clinicians, researchers, and data scientists to identify treatments and specialized care needs and thereby reduce the immediate and long-term impacts of COVID-19.
PHRs can engage older adults for better medication self-management; however, features that motivate continued use will be needed. Longer-term studies of continued users will be required to evaluate the impact of these changes in behavior on patient health outcomes.
RNA interference (RNAi) serves as a powerful and widely used gene silencing tool for basic biological research and is being developed as a therapeutic avenue to suppress disease-causing genes. However, the specificity and safety of RNAi strategies remains under scrutiny because small inhibitory RNAs (siRNAs) induce off-target silencing. Currently, the tools available for designing siRNAs are biased toward efficacy as opposed to specificity. Prior work from our laboratory and others’ supports the potential to design highly specific siRNAs by limiting the promiscuity of their seed sequences (positions 2–8 of the small RNA), the primary determinant of off-targeting. Here, a bioinformatic approach to predict off-targeting potentials was established using publically available siRNA data from more than 50 microarray experiments. With this, we developed a specificity-focused siRNA design algorithm and accompanying online tool which, upon validation, identifies candidate sequences with minimal off-targeting potentials and potent silencing capacities. This tool offers researchers unique functionality and output compared with currently available siRNA design programs. Furthermore, this approach can greatly improve genome-wide RNAi libraries and, most notably, provides the only broadly applicable means to limit off-targeting from RNAi expression vectors.
Article retraction in research is rising, yet retracted articles continue to be cited at a disturbing rate. This paper presents an analysis of recent retraction patterns, with a unique emphasis on the role author self-cites play, to assist the scientific community in creating counter-strategies. This was accomplished by examining the following: (1) A categorization of retracted articles more complete than previously published work. (2) The relationship between citation counts and after-retraction self-cites from the authors of the work, and the distribution of self-cites across our retraction categories. (3) The distribution of retractions written by both the author and the editor across our retraction categories. (4) The trends for seven of our nine defined retraction categories over a 6-year period. (5) The average journal impact factor by category, and the relationship between impact factor, author self-cites, and overall citations. Our findings indicate new reasons for retractions have emerged in recent years, and more editors are penning retractions. The rates of increase for retraction varies by category, and there is statistically significant difference of average impact factor between many categories. 18 % of authors self-cite retracted work post retraction with only 10 % of those authors also citing the retraction notice. Further, there is a positive correlation between self-cites and after retraction citations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.