Objective COVID-19 poses societal challenges that require expeditious data and knowledge sharing. Though organizational clinical data are abundant, these are largely inaccessible to outside researchers. Statistical, machine learning, and causal analyses are most successful with large-scale data beyond what is available in any given organization. Here, we introduce the National COVID Cohort Collaborative (N3C), an open science community focused on analyzing patient-level data from many centers. Methods The Clinical and Translational Science Award (CTSA) Program and scientific community created N3C to overcome technical, regulatory, policy, and governance barriers to sharing and harmonizing individual-level clinical data. We developed solutions to extract, aggregate, and harmonize data across organizations and data models, and created a secure data enclave to enable efficient, transparent, and reproducible collaborative analytics. Organized in inclusive workstreams, in two months we created: legal agreements and governance for organizations and researchers; data extraction scripts to identify and ingest positive, negative, and possible COVID-19 cases; a data quality assurance and harmonization pipeline to create a single harmonized dataset; population of the secure data enclave with data, machine learning, and statistical analytics tools; dissemination mechanisms; and a synthetic data pilot to democratize data access. Discussion The N3C has demonstrated that a multi-site collaborative learning health network can overcome barriers to rapidly build a scalable infrastructure incorporating multi-organizational clinical data for COVID-19 analytics. We expect this effort to save lives by enabling rapid collaboration among clinicians, researchers, and data scientists to identify treatments and specialized care and thereby reduce the immediate and long-term impacts of COVID-19. LAY SUMMARY COVID-19 poses societal challenges that require expeditious data and knowledge sharing. Though medical records are abundant, they are largely inaccessible to outside researchers. Statistical, machine learning, and causal research are most successful with large datasets beyond what is available in any given organization. Here, we introduce the National COVID Cohort Collaborative (N3C), an open science community focused on analyzing patient-level data from many clinical centers to reveal patterns in COVID-19 patients. To create N3C, the community had to overcome technical, regulatory, policy, and governance barriers to sharing patient-level clinical data. In less than 2 months, we developed solutions to acquire and harmonize data across organizations and created a secure data environment to enable transparent and reproducible collaborative research. We expect the N3C to help save lives by enabling collaboration among clinicians, researchers, and data scientists to identify treatments and specialized care needs and thereby reduce the immediate and long-term impacts of COVID-19.
Since late 2019, the novel coronavirus SARS-CoV-2 has introduced a wide array of health challenges globally. In addition to a complex acute presentation that can affect multiple organ systems, increasing evidence points to long-term sequelae being common and impactful. As the worldwide scientific community forges ahead with efforts to characterize a wide range of outcomes associated with SARS-CoV-2 infection, the proliferation of available data has made it clear that formal definitions are needed in order to design robust and consistent studies of Long COVID that consistently capture variation in long-term outcomes. In the present study, we investigate the definitions used in the literature published to date and compare them against data available from electronic health records and patient-reported information collected via surveys. Long COVID holds the potential to produce a second public health crisis on the heels of the pandemic. Proactive efforts to identify the characteristics of this heterogeneous condition are imperative for a rigorous scientific effort to investigate and mitigate this threat.
Objective Extracorporeal membrane oxygenation, an accepted rescue therapy for refractory cardiopulmonary failure, requires a complex multidisciplinary approach and advanced technology. Little is known about the relationship between a center’s case volume and patient mortality. The purpose of this study was to analyze the relationship between hospital extracorporeal membrane oxygenation annual volume and in-hospital mortality and assess if a minimum hospital volume could be recommended. Design Retrospective cohort study Setting A retrospective cohort admitted to children’s hospitals in the Pediatric Health Information System database from 2004-2011 supported with extracorporeal membrane oxygenation was identified. Indications were assigned based on patient age (neonatal vs. pediatric), diagnosis, and procedure codes. Average hospital annual volume was defined as 0-19, 20-49, or ≥50 cases per year. Maximum likelihood estimates were used to assess minimum annual case volume. Patients A total of 7322 pediatric patients aged 0-18 years of age were supported with extracorporeal membrane oxygenation and had an indication assigned. Interventions None Measurements and Main Results Average hospital extracorporeal membrane oxygenation volume ranged from 1-58 cases per year. Overall mortality was 43% but differed significantly by indication. After adjustment for case-mix, complexity of cardiac surgery, and year of treatment, patients treated at medium (OR 0.86, 95% CI 0.75-0.98) and high (OR 0.75, 95% CI 0.63-0.89) volume centers had significantly lower odds of death compared to those treated at low volume centers. The minimum annual case load most significantly associated with lower mortality was 22 (95% CI 22-28). Conclusion Pediatric centers with low extracorporeal membrane oxygenation average annual case volume had significantly higher mortality and a minimum volume of 22 cases per year was associated with improved mortality. We suggest this threshold be evaluated by additional study.
BackgroundThe majority of U.S. reports of COVID-19 clinical characteristics, disease course, and treatments are from single health systems or focused on one domain. Here we report the creation of the National COVID Cohort Collaborative (N3C), a centralized, harmonized, high-granularity electronic health record repository that is the largest, most representative U.S. cohort of COVID-19 cases and controls to date. This multi-center dataset supports robust evidence-based development of predictive and diagnostic tools and informs critical care and policy.Methods and FindingsIn a retrospective cohort study of 1,926,526 patients from 34 medical centers nationwide, we stratified patients using a World Health Organization COVID-19 severity scale and demographics; we then evaluated differences between groups over time using multivariable logistic regression. We established vital signs and laboratory values among COVID-19 patients with different severities, providing the foundation for predictive analytics. The cohort included 174,568 adults with severe acute respiratory syndrome associated with SARS-CoV-2 (PCR >99% or antigen <1%) as well as 1,133,848 adult patients that served as lab-negative controls. Among 32,472 hospitalized patients, mortality was 11.6% overall and decreased from 16.4% in March/April 2020 to 8.6% in September/October 2020 (p = 0.002 monthly trend). In a multivariable logistic regression model, age, male sex, liver disease, dementia, African-American and Asian race, and obesity were independently associated with higher clinical severity. To demonstrate the utility of the N3C cohort for analytics, we used machine learning (ML) to predict clinical severity and risk factors over time. Using 64 inputs available on the first hospital day, we predicted a severe clinical course (death, discharge to hospice, invasive ventilation, or extracorporeal membrane oxygenation) using random forest and XGBoost models (AUROC 0.86 and 0.87 respectively) that were stable over time. The most powerful predictors in these models are patient age and widely available vital sign and laboratory values. The established expected trajectories for many vital signs and laboratory values among patients with different clinical severities validates observations from smaller studies, and provides comprehensive insight into COVID-19 characterization in U.S. patients.ConclusionsThis is the first description of an ongoing longitudinal observational study of patients seen in diverse clinical settings and geographical regions and is the largest COVID-19 cohort in the United States. Such data are the foundation for ML models that can be the basis for generalizable clinical decision support tools. The N3C Data Enclave is unique in providing transparent, reproducible, easily shared, versioned, and fully auditable data and analytic provenance for national-scale patient-level EHR data. The N3C is built for intensive ML analyses by academic, industry, and citizen scientists internationally. Many observational correlations can inform trial designs and care guidelines for this new disease.
In this pediatric population, with serum ferritin levels of >3000 ng/mL, there was increased risk for both receipt of critical care and subsequent death.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.