We introduce a set of minimal simplified models for dark matter interactions with the Standard Model, connecting the two sectors via either a scalar or pseudoscalar particle. These models have a wider regime of validity for dark matter searches at the LHC than the effective field theory approach, while still allowing straightforward comparison to results from non-collider dark matter detection experiments. Such models also motivate dark matter searches in multiple correlated channels. In this paper, we constrain scalar and pseudoscalar simplified models with direct and indirect detection experiments, as well as from existing LHC searches with missing energy plus tops, bottoms, or jets, using the exact loop-induced coupling with gluons. This calculation significantly affects key differential cross sections at the LHC, and must be properly included. We make connections with the Higgs sector, and conclude with a discussion of future searches at the LHC.
Abstract:We derive the latest constraints on various simplified models of natural SUSY with light higgsinos, stops and gluinos, using a detailed and comprehensive reinterpretation of the most recent 13 TeV ATLAS and CMS searches with ∼ 15 fb −1 of data. We discuss the implications of these constraints for fine-tuning of the electroweak scale. While the most "vanilla" version of SUSY (the MSSM with R-parity and flavor-degenerate sfermions) with 10% fine-tuning is ruled out by the current constraints, models with decoupled valence squarks or reduced missing energy can still be fully natural. However, in all of these models, the mediation scale must be extremely low (< 100 TeV). We conclude by considering the prospects for the high-luminosity LHC era, where we expect the current limits on particle masses to improve by up to ∼ 1 TeV, and discuss further model-building directions for natural SUSY that are motivated by this work.
We examine the leptophilic two Higgs doublet model with fermionic dark matter, considering the range of experimental constraints on the Higgs sector. The measurements of the 125 GeV Higgs from the LHC Run-I allow us to focus on those remaining processes that may play an important role at colliders. We find that the leptophilic model allows for a much lighter Higgs than in other two-Higgs models, although discovery at the LHC will be difficult. Adding a dark matter sector motivated by supersymmetric extensions of the leptophilic model, we find the existing parameter space can accommodate constraints from direct detection and the invisible widths of the Higgs and Z, while also fitting the Galactic Center gamma ray excess reported by analyses of Fermi-LAT data. We also discuss the status of the fully supersymmetric version of such models, which include four Higgs doublets and a natural dark matter candidate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.