The authors quantify the relationship between the location of the intertropical convergence zone (ITCZ) and the atmospheric heat transport across the equator (AHTEQ) in climate models and in observations. The observed zonal mean ITCZ location varies from 5.3°S in the boreal winter to 7.2°N in the boreal summer with an annual mean position of 1.65°N while the AHTEQ varies from 2.1 PW northward in the boreal winter to 2.3 PW southward in the boreal summer with an annual mean of 0.1 PW southward. Seasonal variations in the ITCZ location and AHTEQ are highly anticorrelated in the observations and in a suite of state-of-the-art coupled climate models with regression coefficients of −2.7° and −2.4° PW−1 respectively. It is also found that seasonal variations in ITCZ location and AHTEQ are well correlated in a suite of slab ocean aquaplanet simulations with varying ocean mixed layer depths. However, the regression coefficient between ITCZ location and AHTEQ decreases with decreasing mixed layer depth as a consequence of the asymmetry that develops between the winter and summer Hadley cells as the ITCZ moves farther off the equator.
The authors go on to analyze the annual mean change in ITCZ location and AHTEQ in an ensemble of climate perturbation experiments including the response to CO2 doubling, simulations of the Last Glacial Maximum, and simulations of the mid-Holocene. The shift in the annual average ITCZ location is also strongly anticorrelated with the change in annual mean AHTEQ with a regression coefficient of −3.2° PW−1, similar to that found over the seasonal cycle.
The response of the Southern Ocean to a repeating seasonal cycle of ozone loss is studied in two coupled climate models and is found to comprise both fast and slow processes. The fast response is similar to the interannual signature of the southern annular mode (SAM) on sea surface temperature (SST), onto which the ozone hole forcing projects in the summer. It comprises enhanced northward Ekman drift, inducing negative summertime SST anomalies around Antarctica, earlier sea ice freeze-up the following winter, and northward expansion of the sea ice edge year-round. The enhanced northward Ekman drift, however, results in upwelling of warm waters from below the mixed layer in the region of seasonal sea ice. With sustained bursts of westerly winds induced by ozone hole depletion, this warming from below eventually dominates over the cooling from anomalous Ekman drift. The resulting slow time-scale response (years to decades) leads to warming of SSTs around Antarctica and ultimately a reduction in sea ice cover year-round. This two-time-scale behavior-rapid cooling followed by slow but persistent warming-is found in the two coupled models analyzed: one with an idealized geometry and the other with a complex global climate model with realistic geometry. Processes that control the time scale of the transition from cooling to warming and their uncertainties are described. Finally the implications of these results are discussed for rationalizing previous studies of the effect of the ozone hole on SST and sea ice extent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.