The Potsdam Group is a Cambrian to Lower Ordovician siliciclastic unit that crops out along the southeastern margins of the Ottawa graben. From its base upward, the Potsdam consists of the Ausable, Hannawa Falls, and Keeseville formations. In addition, the Potsdam is subdivided into three allounits: allounit 1 comprises the Ausable and Hannawa Falls, and allounits 2 and 3, respectively, the lower and upper parts of the Keeseville. Allounit 1 records Early to Middle Cambrian syn-rift arkosic fluvial sedimentation (Ausable Formation) with interfingering mudstone, arkose, and dolostone of the marine Altona Member recording transgression of the easternmost part of the Ottawa graben. Rift sedimentation was followed by a Middle Cambrian climate change resulting in local quartzose aeolian sedimentation (Hannawa Falls Formation). Allounit 1 sedimentation termination coincided with latest(?) Middle Cambrian tectonic reactivation of parts of the Ottawa graben. Allounit 2 (lower Keeseville) records mainly Upper Cambrian quartzose fluvial sedimentation, with transgression of the northern Ottawa graben resulting in deposition of mixed carbonate–siliciclastic strata of the marine Rivière Aux Outardes Member. Sedimentation was then terminated by an earliest Ordovician regression and unconformity development. Allounit 3 (upper Keeseville) records diachronous transgression across the Ottawa graben that by the Arenigian culminated in mixed carbonate–siliciclastic, shallow marine sedimentation (Theresa Formation). The contact separating the Potsdam Group and Theresa Formation is conformable, except locally in parts of the northern Ottawa graben where the presence of localized islands and (or) coastal salients resulted in subaerial exposure and erosion of the uppermost Potsdam strata, and accordingly unconformity development.
An occurrence of diagenetic fluorapatite cement is documented within the Cambro-Ordovician Keeseville Formation, Potsdam Group, near Chateaugay in New York State. The fluorapatite cement occurs as stratiform layers within ephemeral fluvial quartz arenites, which have been reworked by aeolian processes prior to burial. The paragenetic sequence includes the following: compaction of dust-rimmed grains → quartz cementation → minor kaolinite → fluorapatite cementation followed by secondary dissolution porosity and telogenetic hematite cementation. Mesogenetic illitization of kaolinite may have taken place prior to or following fluorapatite cementation. The fluorapatite occurs as elongated bladed crystals that characteristically contain ladder-like, inclusion-rich cores running parallel to crystal length, surrounded by clearer rims, and larger blocky crystals towards the middle of interstices. In situ SHRIMP analyses of blocky fluorapatite crystals yield a U–Pb age of 486 ± 29 Ma, indicating that the cement formed during mesogenetic burial processes and (or) during fluid flow driven by Taconic orogenic events. There is no obvious source of phosphorous for the fluorapatite cement within the Potsdam Group, but phosphorous-rich lithologies are known from the adjacent basement of the Adirondack Dome. Phosphorous-rich fluids may have been derived from these basement lithologies. The occurrence of the rare fluorapatite cement in the Keeseville Formation adjacent to the Chateaugay Lake Fault raises the possibility that alkaline phosphatic fluids were focused within the fault and migrated laterally away from the fault into the host Keeseville Formation to form stratiform fluorapatite cement in the sandstone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.