It is known that many of the previously published global methane oxidation mechanisms used in conjunction with computational fluid dynamics (CFD) codes do not accurately predict CH4 and CO concentrations under typical lean-premixed combustion turbine operating conditions. In an effort to improve the accuracy of the global oxidation mechanism under these conditions, an optimization method for selectively adjusting the reaction rate parameters of the global mechanisms (e.g., pre-exponential factor, activation temperature, and species concentration exponents) using chemical reactor modeling is developed herein. Traditional global mechanisms involve only hydrocarbon oxidation; that is, they do not allow for the prediction of NO directly from the kinetic mechanism. In this work, a two-step global mechanism for NO formation is proposed to be used in combination with a three-step oxidation mechanism. The resulting five-step global mechanism can be used with CFD codes to predict CO, CO2, and NO emission directly. Results of the global mechanism optimization method are shown for a pressure of 1 atmosphere and for pressures of interest for gas turbine engines. CFD results showing predicted CO and NO emissions using the five-step global mechanism developed for elevated pressures are presented and compared to measured data.
This study addresses the importance of the different chemical pathways responsible for NOx formation in lean-premixed combustion, and especially the role of the nitrous oxide pathway relative to the traditional Zeldovich pathway. NOx formation is modeled and computed over a range of operating conditions for the lean-premixed primary zone of gas turbine engine combustors. The primary zone, of uniform fuel-air ratio, is modeled as a micro-mixed well-stirred reactor, representing the flame zone, followed by a series of plug flow reactors, representing the post-flame zone. The fuel is methane. The fuel-air equivalence ratio is varied from 0.5 to 0.7. The chemical reactor model permits study of the three pathways by which NOx forms, which are the Zeldovich, nitrous oxide, and prompt pathways. Modeling is also performed for the well-stirred reactor alone. Three recently published, complete chemical kinetic mechanisms for the C1-C2 hydrocarbon oxidation and the NOx formation are applied and compared. Verification of the model is based on the comparison of its NOx output to experimental results published for atmospheric pressure jet-stirred reactors and for a ten atmosphere porous-plate burner. Good agreement between the modeled results and the measurements is obtained for most of the jet-stirred reactor operating range. For the porous-plate burner, the model shows agreement to the NOx measurements within a factor of two, with close agreement occurring at the leanest and coolest cases examined. For lean-premixed combustion at gas turbine engine conditions, the nitrous oxide pathway is found to be important, though the Zeldovich pathway cannot be neglected. The prompt pathway, however, contributes small-to-negligible NOx. Whenever the NOx emission is in the 15 to 30ppmv (15% O2, dry) range, the nitrous oxide pathway is predicted to contribute 40 to 45% of the NOx for high pressure engines (30atm), and 20 to 35% of the NOx for intermediate pressure engines (10atm). For conditions producing NOx of less than 10ppmv (15% O2, dry), the nitrous oxide contribution increases steeply and approaches 100%. For lean-premixed combustion in the atmospheric pressure jet-stirred reactors, different behavior is found. All three pathways contribute; none can be dismissed. No universal behavior is found for the pressure dependence of the NOx. It does appear, however, that lean-premixed combustors operated in the vicinity of 10atm have a relatively weak pressure dependence, whereas combustors operated in the vicinity of 30atm have an approximately square root pressure dependence of the NOx.
A high-pressure jet-stirred reactor (HP-JSR) has been built and applied to the study of NOx and N2o formation and CO oxidation in lean-Premixed (LPM) combustion. The measurements obtained with the HP-JSR Provide information on how NOx forms in lean-premixed, high-intensity combustion, and provide comparison to NOx data published recently for practical LPM combustors. The HP-JSR results indicate that the NOx yield is significantly influenced by the rate of relaxation of super-equilibrium concentrations of the O-atom. Also indicated by the HP-JSR results are characteristic NOx formation rates. Two computational models are used to simulate the HP-JSR and to provide comparison to the measurements. The first is a chemical reactor model (CRM) consisting of two perfectly stirred reactors (PSRs) placed in series. The second is a stirred reactor model with finite rate macromixing (i.e., recirculation) and micromixing. The micromixing is treated by either coalescence-dispersion (CD) or interaction by exchange with the mean (IEM) theory. Additionally, a model based on one-dimensional gas dynamics with chemical reaction is used to assess chemical conversions within the gas sample probe.
NOx exhaust emissions for gas turbine engines with lean-premixed combustors are examined as a function of combustor pressure (P), mean residence time (τ), fuel-air equivalence ratio (φ), and inlet mixture temperature (Ti). The fuel is methane. The study is accomplished through chemical reactor modeling of the combustor, using CH4 oxidation and NOx kinetic mechanisms currently available. The NOx is formed by the Zeldovich, prompt, and nitrous oxide mechanisms. The combustor is assumed to have a uniform φ, and is modeled using two reactors in series. The first reactor is a well-stirred reactor (WSR) operating at incipient extinction. This simulates the initiation and stabilization of the combustion process. The second reactor is a plug-flow reactor (PFR), which simulates the continuation of the combustion process, and permits it to approach completion. For comparison, two variations of this baseline model are also considered. In the first variation, the combustor is modeled by extending the WSR until it fills the whole combustor, thereby eliminating the PFR. In the second variation, the WSR is eliminated, and the combustor is treated as a PFR with recycle. These two variations do not change the NOx values significantly from the results obtained using the baseline model. The pressure sensitivity of the NOx is examined. This is found to be minimum, and essentially nil, when the conditions are P = 1 to 10atm, Ti = 600K, and φ = 0.6. However, when one or more of these parameters increases above the values listed, the NOx dependence on the pressure approaches P raised to a power of 0.4-to-0.6. The source of the NOx is also examined. For the WSR operating at incipient extinction, the NOx is contributed mainly by the prompt and nitrous oxide mechanisms, with the prompt contribution increasing as φ increases. However, for the combustor as a whole, the nitrous oxide mechanism predominates over the prompt mechanism, and for φ of 0.5-to-0.6, competes strongly with the Zeldovich mechanism. For φ greater than 0.6-to-0.7, the Zeldovich mechanism is the predominant source of the NOx for the combustor as a whole. Verification of the model is based on the comparison of its output to results published recently for a methane-fired, porous-plate burner operated with variable P, φ, and Ti. The model shows agreement to these laboratory results within a factor two, with almost exact agreement occurring for the leanest and coolest cases considered. Additionally, comparison of the model to jet-stirred reactor NOx data is shown. Good agreement between the model results and the data is obtained for most of the jet-stirred reactor operating range. However, the NOx predicted by the model exhibits a stronger sensitivity on the combustion temperature than indicated by the jet-stirred reactor data. Although the emphasis of the paper is on lean-premixed combustors, NOx modeling for conventional diffusion-flame combustors is presented in order to provide a complete discussion of NOx for gas turbine engines.
The formation of NOx in lean-premixed, high-intensity combustion is examined as a function of several of the relevant variables. The variables are the combustion temperature and pressure, fuel type, combustion zone residence time, mixture inlet temperature, reactor surface-to-volume ratio, and inlet jet size. The effects of these variables are examined by using jet-stirred reactors and chemical reactor modeling. The atmospheric pressure experiments have been completed and are fully reported. The results cover the combustion temperature range (measured) of 1500 to 1850 K, and include the following four fuels: methane, ethylene, propane, and carbon monoxide/hydrogen mixtures. The reactor residence time is varied from 1.7 to 7.4 ms, with most of the work done at 3.5 ms. The mixture inlet temperature is taken as 300 and 600 K, and two inlet jet sizes are used. Elevated pressure experiments are reported for pressures up to 7.1 atm for methane combustion at 4.0 ms with a mixture inlet temperature of 300 K. Experimental results are compared to chemical reactor modeling. This is accomplished by using a detailed chemical kinetic mechanism in a chemical reactor model, consisting of a perfectly stirred reactor (PSR) followed by a plug flow reactor (PFR). The methane results are also compared to several laboratory-scale and industrial-scale burners operated at simulated gas turbine engine conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.