Non-canonical amino acids (ncAAs) are finding increasing use in basic biochemical studies and biomedical applications. The efficiency of ncAA incorporation is highly variable, as a result of competing system composition and codon context effects. The relative quantitative contribution of the multiple factors affecting incorporation efficiency are largely unknown. This manuscript describes the use of green fluorescent protein (GFP) reporters to quantify the efficiency of amber codon reassignment using the Methanocaldococcus jannaschii orthogonal pair system, commonly employed for ncAA incorporation, and quantify the contribution of release factor 1 (RF1) to the overall efficiency of amino acid incorporation. The efficiencies of amber codon reassignments were quantified at eight positions in GFP and evaluated in multiple combinations. The quantitative contribution of RF1 competition to reassignment efficiency was evaluated through comparisons of amber codon suppression efficiencies in normal and genomically recoded Escherichia coli strains. Measured amber stop codon reassignment efficiencies for eight single stop codon GFP variants ranged from 51 to 117% in E. coli DH10B and 76 to 104% in the RF1 deleted E. coli C321.ΔA.exp. Evaluation of efficiency changes in specific sequence contexts in the presence and absence of RF1 suggested that RF1 specifically interacts with +4 Cs and that the RF1 interactions contributed approximately half of the observed sequence context-dependent variation in measured reassignment efficiency. Evaluation of multisite suppression efficiencies suggests that increasing demand for translation system components limits multisite incorporation in cells with competing RF1.
This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record.
Genetic code expansion has largely focused on the reassignment of amber stop codons to insert single copies of non-canonical amino acids (ncAAs) into proteins. Increasing effort has been directed at employing the set of aminoacyl tRNA synthetase (aaRS) variants previously evolved for amber suppression to incorporate multiple copies of ncAAs in response to sense codons in Escherichia coli. Predicting which sense codons are most amenable to reassignment and which orthogonal translation machinery is best suited to each codon is challenging. This manuscript describes the directed evolution of a new, highly efficient variant of the Methanosarcina barkeri pyrrolysyl orthogonal tRNA/aaRS pair that activates and incorporates tyrosine. The evolved M. barkeri tRNA/aaRS pair reprograms the amber stop codon with 98.1 ± 3.6% efficiency in E. coli DH10B, rivaling the efficiency of the wild-type tyrosine-incorporating Methanocaldococcus jannaschii orthogonal pair. The new orthogonal pair is deployed for the rapid evaluation of sense codon reassignment potential using our previously developed fluorescence-based screen. Measurements of sense codon reassignment efficiencies with the evolved M. barkeri machinery are compared with related measurements employing the M. jannaschii orthogonal pair system. Importantly, we observe different patterns of sense codon reassignment efficiency for the M. jannaschii tyrosyl and M. barkeri pyrrolysyl systems, suggesting that particular codons will be better suited to reassignment by different orthogonal pairs. A broad evaluation of sense codon reassignment efficiencies to tyrosine with the M. barkeri system will highlight the most promising positions at which the M. barkeri orthogonal pair may infiltrate the E. coli genetic code.
The expansion of the genetic code beyond a single type of noncanonical amino acid (ncAA) is hindered by inefficient machinery for reassigning the meaning of sense codons. A major obstacle to using directed evolution to improve the efficiency of sense codon reassignment is that fractional sense codon reassignments lead to heterogeneous mixtures of full-length proteins with either a ncAA or a natural amino acid incorporated in response to the targeted codon. In stop codon suppression systems, missed incorporations lead to truncated proteins; improvements in activity may be inferred from increased protein yields or the production of downstream reporters. In sense codon reassignment, the heterogeneous proteins produced greatly complicate the development of screens for variants of the orthogonal machinery with improved activity. We describe the use of a previously-reported fluorescence-based screen for sense codon reassignment as the first step in a directed evolution workflow to improve the incorporation of a ncAA in response to the Arg AGG sense codon. We first screened a library with diversity introduced into both the orthogonal Methanocaldococcus jannaschii tyrosyl tRNA anticodon loop and the cognate aminoacyl tRNA synthetase (aaRS) anticodon binding domain for variants that improved incorporation of tyrosine in response to the AGG codon. The most efficient variants produced fluorescent proteins at levels indistinguishable from the E. coli translation machinery decoding tyrosine codons. Mutations to the M. jannaschii aaRS that were found to improve tyrosine incorporation were transplanted onto a M. jannaschii aaRS evolved for the incorporation of para-azidophenylalanine. Improved ncAA incorporation was evident using fluorescence- and mass-based reporters. The described workflow is generalizable and should enable the rapid tailoring of orthogonal machinery capable of activating diverse ncAAs to any sense codon target. We evaluated the selection based improvements of the orthogonal pair in a host genomically engineered for reduced target codon competition. Using this particular system for evaluation of arginine AGG codon reassignment, however, E. coli strains with genomes engineered to remove competing tRNAs did not outperform a standard laboratory E. coli strain in sense codon reassignment.
Base editors are gene editing tools that allow targeted nucleic acid conversions, most commonly C>T and A>G, through pairing of deamination domains with impaired nucleases. Multiple deaminase domains and architectures have been demonstrated in planta across a wide array of species, with both cytosine and adenine base editing frequencies being observed at over 80%. The ability of base editors to introduce nucleic acid diversity while maintaining the same reading frame should make them powerful tools for plant genetic editing moving forward.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.