Individual optic arbors, normal and regenerated, were stained via anterograde transport of HRP and viewed in tectal whole mounts. Camera lucida drawings were made of 119 normal optic arbors and of 242 regenerated arbors from fish 2 weeks to 14 months postcrush. These arbors were analyzed for axonal trajectory, spatial extent in the horizontal plane, degree of branching, number of branch endings, average depth, and degree of stratification. Normal optic arbors ranged in size from roughly 100 to 400 microns across in a continuous distribution, had an average of 20 branch endings with average of fifth-order branching, and were highly stratified into one of three planes within the major optic lamina (SO-SFGS). Small arbors arising from fine-caliber axons terminated in the most superficial plane of SO-SFGS; large arbors from coarse axons terminated in the superficial and middle planes; and medium arbors from medium-caliber axons terminated in the middle and deep planes of SO-SFGS, as well as deeper in the central gray and deep white layers. Arbors from central tectum tended to be much more tightly stratified than those in the periphery. No other differences between central and peripheral arbors were noted. Mature regenerated arbors (five months or more postcrush) were normal in their number of branch endings, order of branching, and depth of termination. Their branches covered a wider area of tectum, partially because of their early branching and abnormal trajectories of branches. Axonal trajectories were often abnormal with U-turns and tortuos paths. Fine-, medium-, and coarse-caliber axons were again present and gave rise to small, medium, and large arbors at roughly the same depths as in the normals. There was frequently a lack of stratification in the medium and large arbors, which spanned much greater depths than normal. Overall, however, regenerates reestablished nearly normal morphology except for axonal trajectory and stratification. Early in regeneration, the arbors went through a series of changes. At 2 weeks postcrush, regenerated axons had grown branches over a wider-than-normal extent of tectum, though they were sparsely branched and often tipped with growth cones. At 3 weeks, the branches were more numerous and covered a still wider extent (average of five times normal), many covering more than half the tectal length or width. At 4-5 weeks smaller arbors predominated, although a few enlarged arbors were present for up to 8 weeks. Additional small changes occurred beyond 8 weeks as the arbors became progressively more normal in appearance.(ABSTRACT TRUNCATED AT 400 WORDS)
Nitric oxide (NO) and histamine are important neurotransmitters and neuromodulators. We investigated their ability to modulate the membrane ionic currents and excitability of the metacerebral cell (MCC) of Aplysia using voltage clamp techniques. MCC is a serotonergic modulator of the feeding neural circuit. It receives powerful long-lasting excitatory synaptic input mediated by NO and histamine. NO donors reduced a background outward current at and above the resting potential, associated with decreased membrane conductance. This produced a substantial steady-state inward current that was relatively insensitive to cesium or cobalt. The NO response appears to be due to the reduction of a background potassium current and a small increase in persistent inward sodium current. Treatment with 8-bromoguanosine-3'5'-cyclic monophosphate mimics this response, suggesting it is mediated primarily by the NO-guanylyl cyclase-cGMP pathway. In some MCCs, NO blocked an additional potassium current that resulted in current reversal near the potassium equilibrium potential in current-voltage plots. Histamine also reduced a background outward current at and above the resting potential. However, treatment with cobalt, which blocks calcium and calcium-dependent currents, blocked the histamine response, suggesting that histamine decreases calcium activated potassium currents. Although nifedipine (L-type calcium channel blocker) and tetraethylammonium reduced some calcium and calcium-dependent potassium currents, they had only a slight effect on the NO and histamine responses. Both NO and histamine decreased steady-state membrane currents, and thereby depolarized MCC and increased its excitability, but different ionic currents and second messenger pathways are involved, allowing complex state and time dependent modulation of MCC's activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.