Objective Humanin (HN) is a cytoprotective peptide derived from endogenous mitochondria, expressed in the endothelial layer of human vessels, but its role in atherogenesis in vivo is not known. In vitro study, however, HN reduced oxidized low-density lipoprotein induced formation of reactive oxygen species and apoptosis. The present study tested the hypothesis that long term treatment with HN will have a protective role against endothelial dysfunction and progression of atherosclerosis in vivo. Methods and results Daily intraperitonial injection of the HN analogue HNGF6A for 16 weeks prevented endothelial dysfunction and decreased atherosclerotic plaque size in the proximal aorta of ApoE-deficient mice fed on a high cholesterol diet, without showing direct vasoactive effects or cholesterol-reducing effects. HN was expressed in the endothelial layer on the aortic plaques. HNGF6A treatment reduced apoptosis and nitrotyrosine immunoreactivity in the aortic plaques without affecting the systemic cytokine profile. HNGF6A also preserved expression of endothelial nitric oxide synthase in aorta. Conclusions HN may have a protective effect on endothelial function and progression of atherosclerosis by modulating oxidative stress and apoptosis in the developing plaque.
ObjectiveThe mechanism of atherosclerotic plaque progression leading to instability, rupture, and ischemic manifestation involves oxidative stress and apoptosis. Humanin (HN) is a newly emerging endogenously expressed cytoprotective peptide. Our goal was to determine the presence and localization of HN in carotid atherosclerotic plaques.Methods and ResultsPlaque specimens from 34 patients undergoing carotid endarterectomy were classified according to symptomatic history. Immunostaining combined with digital microscopy revealed greater expression of HN in the unstable plaques of symptomatic compared to asymptomatic patients (29.42±2.05 vs. 14.14±2.13% of plaque area, p<0.0001). These data were further confirmed by immunoblot (density of HN/β-actin standard symptomatic vs. asymptomatic 1.32±0.14 vs. 0.79±0.11, p<0.01). TUNEL staining revealed a higher proportion of apoptotic nuclei in the plaques of symptomatic patients compared to asymptomatic (68.25±3.61 vs. 33.46±4.46% of nuclei, p<0.01). Double immunofluorescence labeling revealed co-localization of HN with macrophages (both M1 and M2 polarization), smooth muscle cells, fibroblasts, and dendritic cells as well as with inflammatory markers MMP2 and MMP9.ConclusionsThe study demonstrates a higher expression of HN in unstable carotid plaques that is localized to multiple cell types within the plaque. These data support the involvement of HN in atherosclerosis, possibly as an endogenous response to the inflammatory and apoptotic processes within the atheromatous plaque.
1. The phonotactic threshold of 3 to 5-day-old adult female Acheta domesticus and the threshold of the L1 auditory neuron drop progressively (Fig. 1). 2. Application of juvenile hormone III (JHIII) to 1-day-old females caused both the female's threshold for phonotaxis and the threshold of the L1 auditory neuron to drop 20 or more dB over the next 12 h (Figs. 3-4). 3. JHIII's effect on phonotactic threshold could be blocked by injection with a transcription (alpha-amanitin) or a translation blocker (emetine, Fig. 3). 4. Injection of emetine also prevented the JHIII induced drop in L1's threshold (Fig. 4). 5. Application of JHIII to the surface of, or microinjection of JHIII into one prothoracic hemiganglion caused the female to circle phonotactically away from the side of hormone addition at thresholds 25 to 35 dB lower than the pre-JHIII addition threshold within 2 h (Fig. 6). 6. Application of JHIII to the surface of both prothoracic hemiganglia, accompanied by microinjection of emetine into one hemiganglion resulted in the female emetine into one hemiganglion resulted in the female circling phonotactically toward the side receiving emetine injection, with a 25 to 35 dB drop in threshold (Fig. 6).
The chemoaffinity theory postulates the existence of cell-specific molecular signals that uniquely identify individual developing neurons. Such molecules are thought to promote both accurate axon outgrowth and the formation of correct synaptic connections. To identify candidates for such neuron-specific recognition molecules, we generated monoclonal antibodies that recognize surface-associated antigens expressed by individual identified neurons in the grasshopper embryo. Here we report on a molecular label that is expressed exclusively by two pairs of sibling interneurons in the developing CNS. Our experiments indicate that during axogenesis, this molecule is expressed at the surface of the growth cones of these cells, while during subsequent synaptogenesis, it becomes concentrated at the cells' developing terminal arbors. In both cases the molecule appears to be secreted by the labeled structures. This molecule, which we call TERM-1, is a glycoprotein with a molecular weight of approximately 48 kDa. The highly restricted spatiotemporal expression pattern of TERM-1 implies that individual developing neurons can acquire and retain unique molecular labels that may be important for neuron-specific outgrowth and target recognition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.